Interferometer Topologies and Prepared States of Light Quantum

  • Slides: 16
Download presentation
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman

Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel

Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing 8: 30

Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing 8: 30 8: 45 9: 08 9: 30 10: 00 R. Schnabel (AEI) Introduction: Why Squeezing is Remarkable S. Dwyer (MIT) The Squeezed H 1 Detector H. Grote (AEI) The Squeezed GEO Detector Break H. Miao (UWA) Introduction to Radiation Pressure Noise Squeezing and Opto-mechanical Coupling 10: 20 P. Kwee (MIT) Filter Cavity Concepts 10: 35 R. Ward (ANU) Ponderomotive Squeezing Rotator 10: 50 Z. Korth (Caltech) Optomechanically Induced Transparancy 11: 05 B. Barr (Glasgow) Observing Optical Springs with 100 g Mirrors 11: 25 G. Cole (Vienna) Quantum Optomechanics 11: 45 H. Kaufer (AEI) Optomechanics with a 50 ng Membrane 12: 00 K. Agatsuma (NAOJ) Accurate Quantum Efficiency Measurement 12: 15 D. Friedrich (ICRR) Quantum Radiation Pressure Experiment with a suspended 20 mg Mirror 12: 30 Adjourn Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 2

Why Squeezing is Remarkable Roman Schnabel Albert-Einstein-Institut (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover

Why Squeezing is Remarkable Roman Schnabel Albert-Einstein-Institut (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover

Gravitational Wave Detection Mirror 1 1) Test masses 3) Interference 4) Photo-electric effect Albert

Gravitational Wave Detection Mirror 1 1) Test masses 3) Interference 4) Photo-electric effect Albert - Einstein- Institut Laser 50 % B sp ea lit m te r 2) Laser light ~ km Mirror 2 Photo diode Photo-electric current modulated at GW frequency (“unbiased estimator”) Roman Schnabel, 16 / May / 2012 4

Photo-Electric Current Photons per time interval A gravitational wave signal? N Time intervals Albert

Photo-Electric Current Photons per time interval A gravitational wave signal? N Time intervals Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 5

Photo-Electric Current Photons per time interval No signal, but photon shot noise? N Time

Photo-Electric Current Photons per time interval No signal, but photon shot noise? N Time intervals Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 6

Photon Counting Statistics Probability [rel. units] Coherent state Relative shot-noise Photon number N Albert

Photon Counting Statistics Probability [rel. units] Coherent state Relative shot-noise Photon number N Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 7

Probability [rel. units] “Squeezed” Counting Statistics Noise squeezing Squeezing factor: 10 d. B Squeezing

Probability [rel. units] “Squeezed” Counting Statistics Noise squeezing Squeezing factor: 10 d. B Squeezing factor: 3 d. B Photon number N Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 8

Shot-Noise High power laser Photo diode Albert - Einstein- Institut Roman Schnabel, 16 /

Shot-Noise High power laser Photo diode Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 9

Shot-Noise Squeezing High power laser Squeezed light laser Faraday Rotator Photo diode [Caves, Phys.

Shot-Noise Squeezing High power laser Squeezed light laser Faraday Rotator Photo diode [Caves, Phys. Rev. D 23, 1693 (1981)] Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 10

Generation of Squeezed Light (PDC) Pump field input (cw, 532 nm) c 2 -nonlinear

Generation of Squeezed Light (PDC) Pump field input (cw, 532 nm) c 2 -nonlinear crystal: Mg. O: Li. Nb. O 3 or PPKTP Squeezed field output (cw, 1064 nm) by parametric down-conversion (PDC) Standing wave cavity Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 11

The GEO 600 Squeezed Light Laser Albert - Einstein- Institut Roman Schnabel, 16 /

The GEO 600 Squeezed Light Laser Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 12

12. 7 d. B @1064 nm / Time Series (c) anti-squeezing @ 5 MHz

12. 7 d. B @1064 nm / Time Series (c) anti-squeezing @ 5 MHz squeezing parameter: (a) shot noise -12. 7 d. B (b) squeezing r=0 r = 0. 5 r=1 r = 1. 5 [T. Eberle et al. , PRL 104, 251102 (2010)] Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 13

12. 3 d. B @ 1550 nm / Scaling with Pump [M. Mehmet et

12. 3 d. B @ 1550 nm / Scaling with Pump [M. Mehmet et al. , Opt. Exp. 19, 25763 (2011)] Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 14

Frequency Dependent Squeezing X 2 X 1 Detuned filter cavity [Kimble et al. ]

Frequency Dependent Squeezing X 2 X 1 Detuned filter cavity [Kimble et al. ] [Chelkowski et al. , Phys. Rev. A 71, 013806 (2005)]. Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 15

Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing 8: 30

Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing 8: 30 8: 45 9: 08 9: 30 10: 00 R. Schnabel (AEI) Introduction: Why Squeezing is Remarkable S. Dwyer (MIT) The Squeezed H 1 Detector H. Grote (AEI) The Squeezed GEO Detector Break H. Miao (UWA) Introduction to Radiation Pressure Noise Squeezing and Opto-mechanical Coupling 10: 20 P. Kwee (MIT) Filter Cavity Concepts 10: 35 R. Ward (ANU) Ponderomotive Squeezing Rotator 10: 50 Z. Korth (Caltech) Optomechanically Induced Transparancy 11: 05 B. Barr (Glasgow) Observing Optical Springs with 100 g Mirrors 11: 25 G. Cole (Vienna) Quantum Optomechanics 11: 45 H. Kaufer (AEI) Optomechanics with a 50 ng Membrane 12: 00 K. Agatsuma (NAOJ) Accurate Quantum Efficiency Measurement 12: 15 D. Friedrich (ICRR) Quantum Radiation Pressure Experiment with a suspended 20 mg Mirror 12: 30 Adjourn Albert - Einstein- Institut Roman Schnabel, 16 / May / 2012 16