Instrument Concepts Instrument Function l range Resolution FOV

  • Slides: 13
Download presentation
Instrument Concepts Instrument Function l range Resolution FOV (microns) GMACS Optical Multi-Object Spectrometer 0.

Instrument Concepts Instrument Function l range Resolution FOV (microns) GMACS Optical Multi-Object Spectrometer 0. 35 -1. 0 250 -4000 36 -144 arcmin^2 NIRMOS Near-IR Multi-Object Spectrometer 1. 0 -2. 5 Up to ~4000 49 arcmin^2 QSpec Optical High Resolution Spectrometer 0. 3 -1. 05 30 K 1” slit 3” + fibre mode SHARPS (G-CLEF) Optical High Resolution (Doppler) Spectrometer 0. 4 -0. 7 150 K 7 x 1” fibers GMTNIRS Near-IR High-Resolution Spectrometer 1. 2 - 5. 0 25 K-100 K Single object MIISE Mid-IR Imaging Spectrometer 3. 0 -25. 0 1500 30” HRCam Near-IR AO Imager 0. 9 -5. 0 5 -5000 30” GMTIFS NIR AO-fed IFU 0. 9 -2. 5 3000 -5000 3” Science with Giant Telescopes - Jun 15 -18, 2008 1

History GMT instrument conceptual design studies – 2005 Internal to GMT consortium (at that

History GMT instrument conceptual design studies – 2005 Internal to GMT consortium (at that time) GMT conceptual design review – February 2006 Subsequent work by project, with partner participation: Integration of seeing-limited instruments Reconfiguration of instrument platform AO relay Meetings: Seeing-limited instruments workshop Adaptive optics workshop Planet RV workshop Science with GMT (Canberra) – March 2008 Before proceeding, need to resolve instrument-AO interface Science with Giant Telescopes - Jun 15 -18, 2008 2

GMT Instrument Design Studies • Request letters of intent (e. g. Sep 2008) •

GMT Instrument Design Studies • Request letters of intent (e. g. Sep 2008) • Select list for design studies (~ 6? ) (Nov 2008) • Request for proposals released for each instrument (Jan 2009) • Proposals due (Mar 2009) • Award contracts for design studies (May 2009) • Negotiate study contracts, contract start • Finish design studies and review (Jul 2009) (Dec 2010) • Select first light instruments, start instrument development Science with Giant Telescopes - Jun 15 -18, 2008 (2011) 3

Some Issues Intention of design studies is to form actual instrument teams – across

Some Issues Intention of design studies is to form actual instrument teams – across (and beyond) partner institutions Design study funding: project $ in-kind (probably not telescope time – too sensitive) Evaluation: Internal – hard to avoid some conflicts External Science with Giant Telescopes - Jun 15 -18, 2008 4

Science with Giant Telescopes - Jun 15 -18, 2008 5

Science with Giant Telescopes - Jun 15 -18, 2008 5

GMACS • Multi-object, multi-slit spectrograph • 4 x spectrographs, each with red and blue

GMACS • Multi-object, multi-slit spectrograph • 4 x spectrographs, each with red and blue arms, VPH gratings • Field of view: 8 x 18 arcmin • Wavelength range 0. 36 – 1. 02 μm • Collimated beam diameter: 300 mm Science with Giant Telescopes - Jun 15 -18, 2008 • Resolving power w/ 0. 7 arcsec slit: R ~ 1400 in blue R ~ 2700 in red (for accurate sky subtraction) cross-over at 6500 Å • Separate 8 x 9 arcmin imaging channel 6

GMACS – Optical Layout x 4 Science with Giant Telescopes - Jun 15 -18,

GMACS – Optical Layout x 4 Science with Giant Telescopes - Jun 15 -18, 2008 7

NIRMOS • Wavelength range: 0. 85 – 2. 5 μm • Imaging Mode: •

NIRMOS • Wavelength range: 0. 85 – 2. 5 μm • Imaging Mode: • 7 x 7 arcmin field of view • 0. 067 arcsec/pixel • 6 kx 6 k detector • Spectroscopy Mode: • Multi-slits: 140 x 3 arcsec long, full wavelength coverage • 5 x 7 arcmin field of view • R ~ 3000 with 0. 5 arcsec slits • Augmented by GLAO Science with Giant Telescopes - Jun 15 -18, 2008 8

GMACS, NIRMOS & MIISE Science with Giant Telescopes - Jun 15 -18, 2008 9

GMACS, NIRMOS & MIISE Science with Giant Telescopes - Jun 15 -18, 2008 9

QSpec • Four beam instrument • 450 mm beam diameter • R 4 echelle

QSpec • Four beam instrument • 450 mm beam diameter • R 4 echelle gratings (x 2): 200 x 1600 mm • Rφ = 30, 000 arcsecs • λλ = 300 nm to 1. 07 µm (in four channels) • 2 -pix resolution: R=125, 000 • Pupil anamorphism • White pupil design • VPH grating cross-dispersion • Four catadioptric cameras • 4 k x 6. 5 k to 6 k x 8 k CCDs (15 µm pixels) Science with Giant Telescopes - Jun 15 -18, 2008 Red: 536 to 734 nm NIR: 723 to 1072 nm 1 m UV: 299 to 389 nm Blue: 383 to 545 nm 10

SHARPS • Planet Doppler spectroscopy • Fiber-fed: 7 x(obj, sky, cal) x 1. 0”

SHARPS • Planet Doppler spectroscopy • Fiber-fed: 7 x(obj, sky, cal) x 1. 0” • Resolving power ~ 150, 000 • Wavelength: > 4400 – 6700 Å • White pupil spectrograph design Science with Giant Telescopes - Jun 15 -18, 2008 • CCD mosaic detector • Deep depletion CCDs for red orders • Vacuum-enclosed spectrograph • High-stability thermal environment • Bulky enclosure 11

MIISE – Mid-IR Imaging Spectrometer • Wavelength range: 3 - 25 μm 8 -25

MIISE – Mid-IR Imaging Spectrometer • Wavelength range: 3 - 25 μm 8 -25 μm • Field of view: 30 – 40 arcsec detector • Resolving power: R ~ 1500 • Modes: • Imaging • Spectroscopy • Nulling (8 -25 μm) • Coronography (3 -5 μm) • Short wavelength channel: 3 -5μ, 2 micron 0. 010 arcsec/pixel phase sensor • Long wavelength channel: 8 -25μ, 0. 030 arcsec/pixel 3 -5 μm detector input from AO feed dichroic nulling channel long wavelength imaging channel Science with Giant Telescopes - Jun 15 -18, 2008 12

GMTIFS – GMT Integral Field Spectrograph • • Single-object, AO-corrected, integral-field spectroscopy Wavelength range:

GMTIFS – GMT Integral Field Spectrograph • • Single-object, AO-corrected, integral-field spectroscopy Wavelength range: 1. 0 – 2. 5 μm Resolving power: 4000 – 5000 Range of spatial sampling and fields of view: • Galaxy dynamics: 0. 05 -0. 10 arcsec sampling, 2 -3 arcsec FOV • Black hole masses: Diffraction-limited sampling, small FOV Spaxel size along slit (arcsec) 0. 008 0. 016 0. 032 0. 054 Slitlet width (arcsec) 0. 020 0. 040 0. 080 0. 135 Field of view (arcsec) 0. 80 1. 6 3. 2 5. 4 Tel focus F-converter slicer fold collimator grating Science with Giant Telescopes - Jun 15 -18, 2008 detector camera 13