Inquiry in Science In the science classroom wondering

  • Slides: 60
Download presentation
Inquiry in Science

Inquiry in Science

"In the science classroom, wondering should be as highly valued as knowing, " F.

"In the science classroom, wondering should be as highly valued as knowing, " F. James Rutherford and Andrew Ahlgren in “Science for All Americans”

Scientific Inquiry • Addresses the California State Standard for: Developing Explanations Based on Evidence

Scientific Inquiry • Addresses the California State Standard for: Developing Explanations Based on Evidence

The Big Picture • Inquiry is the common thread in a student-centered classroom: Used

The Big Picture • Inquiry is the common thread in a student-centered classroom: Used in – Cornell notes – Tutorials – Socratic Seminars – Philosophical Chairs – Learning Logs – Critical thinking & decision-making

The Big Picture • Often begins with a question • Encourages students to think

The Big Picture • Often begins with a question • Encourages students to think critically • Creates the opportunity for students to problem-solve & share analyses • Inquiry promotes COLLABORATION

Why Use Inquiry as a Teaching Methodology? • Inquiry immediately engages students with their

Why Use Inquiry as a Teaching Methodology? • Inquiry immediately engages students with their own thinking processes.

Why Use Inquiry as a Teaching Methodology? • What results is student ownership for

Why Use Inquiry as a Teaching Methodology? • What results is student ownership for enlarged understanding of concepts and values.

Scientific Inquiry • Encourages students to think critically about inferences and logical relationships between

Scientific Inquiry • Encourages students to think critically about inferences and logical relationships between cause & effect • Often begins with a question about a natural phenomenon.

Scientific Inquiry • Once asked, a process of scientific inquiry begins – Eventually a

Scientific Inquiry • Once asked, a process of scientific inquiry begins – Eventually a proposed explanation • Experimental design is also part of the inquiry process. From “Teaching About Evolution & the Nature of Science, ” N. A. S.

“You can’t get students to think critically without asking critical questions” Carmen Serret-Lopez

“You can’t get students to think critically without asking critical questions” Carmen Serret-Lopez

Bloom’s Levels 1. REMEMBER: recalling information 2. UNDERSTAND: comprehend meaning 3. APPLY: using learning

Bloom’s Levels 1. REMEMBER: recalling information 2. UNDERSTAND: comprehend meaning 3. APPLY: using learning in new situations 4. ANALYZE: ability to see parts & relationships 5. EVALUATION: judgment based on criteria 6. CREATE: Use parts to create a new whole

Level 1 - REMEMBER Recalling Information • What information is given? • What are

Level 1 - REMEMBER Recalling Information • What information is given? • What are you being asked to find? • What formula would you use? • What does _____mean? • What is the formula for. . . ? • List the. . . • Name the. . . • Where did. . . ? • What is. . . ? • Who was/were. . . ? • When did. . .

Level 2 - UNDERSTAND Comprehending Meaning • What are you being asked to find?

Level 2 - UNDERSTAND Comprehending Meaning • What are you being asked to find? • Explain the concept of. . . • Give me an example of. . . • Describe in your words what ___ means. • What concepts does this connect to? • Draw a diagram of. . . • Illustrate how _____ works. • Explain how you calculate. . .

Level 3 - APPLY Using Learning in New Situations • What additional information is

Level 3 - APPLY Using Learning in New Situations • What additional information is needed to solve this problem? • Can you see other relationships that will help you find this information? • How can you put your data in graphic form? • What occurs when. . ? • How would you change your procedures to get better results? • What method would you use to. . . • Does it make sense to. . . ?

Level 4 - ANALYZE Ability to See Parts & Relationships • Compare and contrast

Level 4 - ANALYZE Ability to See Parts & Relationships • Compare and contrast _____ to _____. • What was important about. . . • Which errors most affected your results? • What were some sources of variability? • How do your conclusions support your hypothesis? • What prior research/formulas support your conclusions? • How else could you account for. . . ?

Level 5 - EVALUATE Judgment Based on Criteria • How can you tell if

Level 5 - EVALUATE Judgment Based on Criteria • How can you tell if your answer is reasonable? • What would happen to ____ if ____ variable were increased/decreased? • How would repeat trials affect your data? • What significance is this experiment to the subject you're learning? • What type of evidence is most compelling to you? • Do you feel ____ experiment is ethical? • Are your results biased?

Level 6 - CREATE Use Parts to Create a New Whole • Design a

Level 6 - CREATE Use Parts to Create a New Whole • Design a lab to show. . . • Predict what will happen to ____ as ____ is changed? • Using a principle of science, how can we find. . . ? • Describe the events that might occur if. . . • Design a scenario for. . . • Pretend you are. . . • What would the world be like if. . .

Why Is This Important? • State and National surveys indicate that approximately 90% of

Why Is This Important? • State and National surveys indicate that approximately 90% of the questions K-12 th grade students are exposed to are lower-level questions. • In college this trend reverses, and students deal primarily with high-level critical questions.

TIMSS Recommendations • To increase rigor and give students a chance to study each

TIMSS Recommendations • To increase rigor and give students a chance to study each topic more deeply: – encourage the use of higherlevel inquiry questioning that requires students to use their creativity and imagination.

Inquiry In Science Learner performs lab activity Teacher asks students probing questions Science as

Inquiry In Science Learner performs lab activity Teacher asks students probing questions Science as inquiry is when… Learner reads about prior scientific investigations Learner justifies proposed explanation

Text-Driven Inquiry • Beluga Whale Article – Read each passage and answer the questions

Text-Driven Inquiry • Beluga Whale Article – Read each passage and answer the questions on Cornell notes

Where Do Belugas Survive?

Where Do Belugas Survive?

Passage One • Why do you think the number of whales has not increased?

Passage One • Why do you think the number of whales has not increased? • What is the question that would best guide a scientific investigation about why the population of whales does not increase?

Passage Two • Based on your understanding, were the original investigations adequate? • Did

Passage Two • Based on your understanding, were the original investigations adequate? • Did scientists use appropriate tools & techniques to gather, analyze & interpret data? • Did scientists use evidence to explain that whales died because of pollutants? • What would be the best approach to design & conduct a scientific investigation that would demonstrate a cause-and-effect relationship?

Passage Three Briefly identify portions that illustrate one of the aspects of scientific inquiry.

Passage Three Briefly identify portions that illustrate one of the aspects of scientific inquiry. I. Different kinds of questions suggest 2. 3. 4. different kinds of scientific investigations. Current scientific knowledge & understanding guide scientific investigations. Math is important in all aspects of scientific inquiry. Technology used to gather data enhances accuracy and allows scientists to analyze and quantify results of investigations.

Passage Three Briefly identify portions that illustrate one of the aspects of scientific inquiry.

Passage Three Briefly identify portions that illustrate one of the aspects of scientific inquiry. 5. Scientific explanations emphasize evidence, have logically consistent arguments, and use scientific principles, models, and theories. 6. Science advances through legitimate skepticism. 7. Scientific investigations sometimes result in new ideas and phenomena for study.

What do the Footprints Say? ? ?

What do the Footprints Say? ? ?

Mission • Reconstruct happenings from the geological past by analyzing a set of fossilized

Mission • Reconstruct happenings from the geological past by analyzing a set of fossilized tracks • Form defensible explanations of past events from limited evidence. • As more evidence is available, modify or abandon your hypotheses.

Position #1 • Can you tell anything about size or nature of organisms? •

Position #1 • Can you tell anything about size or nature of organisms? • Were the tracks made at the same time? • How many animals involved? • Can you reconstruct a series of events represented by this set of fossil tracks? • Suggest evidence to support your explanations!

Position #2 • With new info, revisit first explanation • MODIFY your explanation and/or

Position #2 • With new info, revisit first explanation • MODIFY your explanation and/or add new ones

Interpret What Happened

Interpret What Happened

Questions to Consider. . . • In what directions did animals move? • Did

Questions to Consider. . . • In what directions did animals move? • Did they change speed or direction? • What might have changed the footprint pattern? • Was the land level or irregular? • Was the soil moist or dry? • In what kind of rocks were the prints made? • Were sediments coarse or fine? • Characteristics of track environment?

Remember! • Any reasonable explanation must be based only on those proposed explanations that

Remember! • Any reasonable explanation must be based only on those proposed explanations that still apply when all of the puzzle is projected

For Each Explanation. . . • Be sure to indicate the evidence! If you

For Each Explanation. . . • Be sure to indicate the evidence! If you could VISIT the site, what evidence would you look for to support your hypothesis? Adapted from a BSCS lab

Constructivist Process • Journey in which the voyagers arrive without a map in hand

Constructivist Process • Journey in which the voyagers arrive without a map in hand • Guided by the questions, "Where are we now? " and "Where should we go next? ” • Teacher initiates & facilitates learning activities that help students create their own maps to the territory

Scientific Modeling The “Black Tube” Model · Investigate the tube with all your senses

Scientific Modeling The “Black Tube” Model · Investigate the tube with all your senses · Make a drawing of what the INSIDE of the tube looks like · Post your drawings and take a “museum walk” to look at everyone’s model

Open-ended Inquiry • Creates the opportunity for students to design their own experimental and

Open-ended Inquiry • Creates the opportunity for students to design their own experimental and compare their analyses with groups. – Teaches students to comprehend science as a process – Promotes COLLABORATION

Levels of Openness • Level 0 = Students make few decisions-other than deciding whether

Levels of Openness • Level 0 = Students make few decisions-other than deciding whether they got the "right answers. " • Level 3 = Students decide what to investigate, how to investigate it, and how to interpret the results they generate. • Level 3 activities are what most scientists do

Experimental Design • Whole faculty agrees on what the students in ALL sciences need

Experimental Design • Whole faculty agrees on what the students in ALL sciences need to do: 1. to be able to design an experiment 2. to be able to write a GROUP lab report 3. to be able to graph information

Example: Pill Bug Experiment • Demonstrates experimental design principles and scientific method • Constructivist

Example: Pill Bug Experiment • Demonstrates experimental design principles and scientific method • Constructivist Approach ØOpen-ended lab

Ex. D Template Title: Hypothesis: Independent Variable (IV): Dependent Variable (DV): Control: Constants: 1)

Ex. D Template Title: Hypothesis: Independent Variable (IV): Dependent Variable (DV): Control: Constants: 1) 2) 3)

Creating an Ex. D • Define the problem – “The Effect Of Substrate On

Creating an Ex. D • Define the problem – “The Effect Of Substrate On Pillbug Habitat Selection” • Define the Independent Variable(s) – Time in habitat chamber • Define the Dependent Variable(s) – Type of substrate

Creating an Ex. D • Define the Experimental Group(s) – Cut grass, wood chips

Creating an Ex. D • Define the Experimental Group(s) – Cut grass, wood chips • Define the Control Group – Chamber with natural humus substrate

Creating an Ex. D • Make a Hypothesis – If Pillbugs prefer the natural

Creating an Ex. D • Make a Hypothesis – If Pillbugs prefer the natural humus chamber, then they will stay there at least 80% of the time after the first 10 minutes of experimentation.

Creating an Ex. D • Determine the Experimental Constants – Moisture level, temperature, food,

Creating an Ex. D • Determine the Experimental Constants – Moisture level, temperature, food, lack of predation • Choose and Sketch the up set-

Creating an Ex. D • Determine the number of trials or groups needed for

Creating an Ex. D • Determine the number of trials or groups needed for validity – 10 pillbugs/chamber – 10 thirty-second trials • Determine how the results will be quantified – # of pillbugs/ sec – T-test chamber/30

Write Up the Procedure • 1) Prepare a choice chamber • 2) Cover the

Write Up the Procedure • 1) Prepare a choice chamber • 2) Cover the bottom of each chamber with either wood chips, cut grass or natural humus • 3) Transfer ten pillbugs from the stock culture into each chamber • 4) Cover the chambers choice

Write Up the Procedure • 5) Count and record how many pillbugs are in

Write Up the Procedure • 5) Count and record how many pillbugs are in each chamber every 30 seconds for I 0 minutes

Run the Experiment • Quantitatively summarize data – Make a Bar Graph of the

Run the Experiment • Quantitatively summarize data – Make a Bar Graph of the number of pillbugs in experimental and control chambers per 30 second interval. – Perform a “t-test”

Analyze The Results • Interpret statistics properly – DON’T make broad statements from small

Analyze The Results • Interpret statistics properly – DON’T make broad statements from small samples – Use P . 05 that differences have occurred from chance alone

Analyze The Results • • Compare data with other groups Analyze the trends Address

Analyze The Results • • Compare data with other groups Analyze the trends Address errors Look at all alternative interpretations

Come to a Conclusion • Validate the hypothesis – Decide whether your data fits

Come to a Conclusion • Validate the hypothesis – Decide whether your data fits the: ¨ Null hypothesis or ¨ Alternative hypothesis

Retest • Refine the experiment – Choose the same size pillbugs • Re-test •

Retest • Refine the experiment – Choose the same size pillbugs • Re-test • Write a group Lab Report

Ex. D Using Advertisements • To show what you know about experimental design, you

Ex. D Using Advertisements • To show what you know about experimental design, you will design an experiment to test the claims in a magazine ad.

Ex. D Using Advertisements

Ex. D Using Advertisements

Procedure 1. Select a magazine ad. 2. Neatly cut out the advertisement. 3. Design

Procedure 1. Select a magazine ad. 2. Neatly cut out the advertisement. 3. Design a valid experiment that focuses on what the magazine ad is claiming. 4. Create an Experimental Design Chart showing the design of your valid experiment. – Neatly written using markers.

Procedure 5. Write a complete list of steps to perform the experiment. Things to

Procedure 5. Write a complete list of steps to perform the experiment. Things to consider: – – – How much product to apply How to choose participants How to measure the responses/ variables # of trials What are the constants and how would you control them – What is the control – What types of experimental groups are used, etc.

Procedure 6. Peer Review your procedure with another group. Redraft your procedure based on

Procedure 6. Peer Review your procedure with another group. Redraft your procedure based on the all revisions suggested. 7. Attach the ad and the procedure to the front of Group Member Names your poster. Construct Experimental Design Chart Here Attach AD here Attach Procedure Here

Developed by Anne F. Maben AVID LACOE Science Coach

Developed by Anne F. Maben AVID LACOE Science Coach