Inertial Confinement Fusion Dieter H H Hoffmann TU

  • Slides: 34
Download presentation
Inertial Confinement Fusion Dieter H. H. Hoffmann TU / GSI Darmstadt 300. WE-Heraeus Seminar

Inertial Confinement Fusion Dieter H. H. Hoffmann TU / GSI Darmstadt 300. WE-Heraeus Seminar ENERGIEFORSCHUNG 26 -28 Mai 2003 TU Darmstadt

3 confinement concepts TU Darmstadt 2

3 confinement concepts TU Darmstadt 2

Fusion of Hydrogen Isotopes Deuterium und Tritium TU Darmstadt 3

Fusion of Hydrogen Isotopes Deuterium und Tritium TU Darmstadt 3

Microballoon Fusion-target TU Darmstadt 4

Microballoon Fusion-target TU Darmstadt 4

Principle of inertial fusion TU Darmstadt 5

Principle of inertial fusion TU Darmstadt 5

TU Darmstadt 6

TU Darmstadt 6

Lawson Criterion n 14 10 3 s/cm 2 r. R>1 g/cm n: Particle number

Lawson Criterion n 14 10 3 s/cm 2 r. R>1 g/cm n: Particle number density [cm-3] r: density [g/cm 3] : Confinement time [s] T: Temperature [ke. V] R: compressed fuel radius Figure of merit: n T TU Darmstadt 7

TU Darmstadt 8

TU Darmstadt 8

Heavy Ion Target, schematically TU Darmstadt 9

Heavy Ion Target, schematically TU Darmstadt 9

Heavy ion target TU Darmstadt 10

Heavy ion target TU Darmstadt 10

Indirect drive heavy ion target J. Meyer-ter-Vehn TU Darmstadt 11

Indirect drive heavy ion target J. Meyer-ter-Vehn TU Darmstadt 11

Indirect drive heavy ion target J. Meyer-ter-Vehn TU Darmstadt 12

Indirect drive heavy ion target J. Meyer-ter-Vehn TU Darmstadt 12

Symmetry by radiation shields J. Maruhn, Frankfurt TU Darmstadt 13

Symmetry by radiation shields J. Maruhn, Frankfurt TU Darmstadt 13

National Ignition Facility, LLNL TU Darmstadt 14

National Ignition Facility, LLNL TU Darmstadt 14

TU Darmstadt 15

TU Darmstadt 15

Why heavy ions: Comparison of concepts TU Darmstadt 16

Why heavy ions: Comparison of concepts TU Darmstadt 16

Schematic Fusion Power Plant based on Heavy Ion Beams TU Darmstadt 17

Schematic Fusion Power Plant based on Heavy Ion Beams TU Darmstadt 17

Anforderungen an einen Beschleuniger für die Trägheitsfusion Energie pro Puls: Pulslänge: Pulsleistung: E 5

Anforderungen an einen Beschleuniger für die Trägheitsfusion Energie pro Puls: Pulslänge: Pulsleistung: E 5 – 10 MJ t 5 -10 ns P 1015 W Teilchenzahl pro Puls bei E 0 = 10 Ge. V Und Au, Pb, Bi Projektilen: N 1015 TU Darmstadt 18

HIDIF study: Heavy Ion Driverfor Inertial Fusion TU Darmstadt 19

HIDIF study: Heavy Ion Driverfor Inertial Fusion TU Darmstadt 19

HIDIF TU Darmstadt 20

HIDIF TU Darmstadt 20

GSI - Darmstadt TU Darmstadt 21

GSI - Darmstadt TU Darmstadt 21

Present and Future Facilities at GSI TU Darmstadt 22

Present and Future Facilities at GSI TU Darmstadt 22

Energy loss on free and bound electrons TU Darmstadt 23

Energy loss on free and bound electrons TU Darmstadt 23

High homogeneity dense plasmas Conversion of von Laserlight into soft X-rays for Interaction experiments

High homogeneity dense plasmas Conversion of von Laserlight into soft X-rays for Interaction experiments with heavy ions M. Roth et al. TU Darmstadt 24

Heavy ion beam & target beam gasdynamic motion TU Darmstadt volume heating 25

Heavy ion beam & target beam gasdynamic motion TU Darmstadt volume heating 25

Final Focus TU Darmstadt 26

Final Focus TU Darmstadt 26

Plasma Linse (U. Neuner et al) lin ea r. B -fi el d focal

Plasma Linse (U. Neuner et al) lin ea r. B -fi el d focal beam spots nonlinear B-field TU Darmstadt

Introduction Petawatt High Energy Laser for Heavy Ion Experiments Nd: Glas Laser Double-pass and

Introduction Petawatt High Energy Laser for Heavy Ion Experiments Nd: Glas Laser Double-pass and Booster Geometry, 31. 5 cm Beamdiameter: 4 -6 k. J Puls Energy @ 10 ns 500 J Puls Energy @ 0. 5 ps TU Darmstadt 28

High Energy Ions in Laser Plasma Intense Laser Beam Matter Interaction Laser Beam TU

High Energy Ions in Laser Plasma Intense Laser Beam Matter Interaction Laser Beam TU Darmstadt 29

TU Darmstadt 30

TU Darmstadt 30

TU Darmstadt 31

TU Darmstadt 31

Pulsed-power accelerators with z-pinch loads provide efficient time compression and power amplification Target Chamber

Pulsed-power accelerators with z-pinch loads provide efficient time compression and power amplification Target Chamber Z 11. 5 MJ stored energy 19 MA peak load current 40 TW electrical power to load 100 -250 TW x-ray power 1 -1. 8 MJ x-ray energy TU Darmstadt 32

Two complementary approaches to z-pinch-driven capsule implosions are being studied Double-ended hohlraum • Two

Two complementary approaches to z-pinch-driven capsule implosions are being studied Double-ended hohlraum • Two 60 MA pinches • 380 MJ yield Key issues • hohlraum energetics • radiation symmetry • pulseshaping • preheat • capsule implosions Dynamic hohlraum • 54 MA pinch • 530 MJ yield Both concepts use hohlraum coupling, symmetry, and capsule scaling physics developed in the indirect-drive laser and ion beam programs TU Darmstadt 33

Recent Progress in ICF Capsule Experiments at Sandia National Laboratories Tom Mehlhorn, Manager Target

Recent Progress in ICF Capsule Experiments at Sandia National Laboratories Tom Mehlhorn, Manager Target & Z-pinch Theory Dept Sandia National Laboratories International Workshop on Physics of High Energy Density in Matter 2003 Hirschegg, Austria Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC 04 -94 AL 84000. 34