Improving the RF Active Circuit Design Cycle Through

  • Slides: 38
Download presentation
Improving the RF Active Circuit Design Cycle Through Innovations in Electrothermal Modeling, Characterization, and

Improving the RF Active Circuit Design Cycle Through Innovations in Electrothermal Modeling, Characterization, and Design Techniques Dr. Charles Baylis Faculty Candidate baylis@eng. usf. edu April 11, 2008

Overview • • USF RACAM Research Group The RF Active Circuit Design Cycle Research

Overview • • USF RACAM Research Group The RF Active Circuit Design Cycle Research Strategy/Overview Nonlinear Modeling of Thermal and Trapping Effects in Ga. N HEMTs • Radar Power Amplifier Combining Techniques for Sidelobe Reduction • Prediction of Phase Noise in Amplifiers and Frequency Multipliers • Development of Microwave Measurement Techniques for Cell Cultures School of Engineering & Computer Science

University of South Florida School of Engineering & Computer Science

University of South Florida School of Engineering & Computer Science

RACAM at USF • 4 graduate students, 2 undergraduate students School of Engineering &

RACAM at USF • 4 graduate students, 2 undergraduate students School of Engineering & Computer Science

RF Active Circuit Design Cycle Design Measurements Models Simulation Fabrication Testing SUCCESS!!! Good models

RF Active Circuit Design Cycle Design Measurements Models Simulation Fabrication Testing SUCCESS!!! Good models can eliminate this path. School of Engineering & Computer Science

Strategy for Obtaining Funds • Obtain initial grass-roots funding from industry contacts. • From

Strategy for Obtaining Funds • Obtain initial grass-roots funding from industry contacts. • From this foundation, apply for agency funding. School of Engineering & Computer Science

Research Overview • Nonlinear Modeling for Power Amplifier Design (Modelithics) $25, 000 + $25,

Research Overview • Nonlinear Modeling for Power Amplifier Design (Modelithics) $25, 000 + $25, 000 State Program Match = $50, 000 • Prediction of Phase Noise in Amplifiers and Frequency Multipliers (Trak Microwave) $12, 000 + $6, 000 State Program Match = $18, 000 • Investigation of Combining Techniques for Reduced Sidelobes in Radar Power Amplifiers NRL Proposal – March 2008, $170, 000 for 2 years School of Engineering & Computer Science

Research Overview • Accurate Bio-Impedance Measurements NSF Proposal - February 2008, $361, 381 for

Research Overview • Accurate Bio-Impedance Measurements NSF Proposal - February 2008, $361, 381 for 3 years • Research on a Wireless System for Transportation Applications Proposal to Sunovia Energy Systems, February 2008, 3 years • Development of Model Scoring Metrics for RF Circuit Design Proposal to Raytheon RF Components (Andover, Massachusetts), $49, 500 for 1 year School of Engineering & Computer Science

Electrothermal FET Modeling • Nonlinear RF CAD Models are extracted from measurements of Field-Effect

Electrothermal FET Modeling • Nonlinear RF CAD Models are extracted from measurements of Field-Effect Transistors (FETs): – Current-Voltage (IV) – S-Parameters – Load Pull • Pulsed IV measurements allow thermal and trap effects to be accurately modeled. School of Engineering & Computer Science

IV Curves • The IV curves give the boundaries for the large-signal performance of

IV Curves • The IV curves give the boundaries for the large-signal performance of the FET: ID Maximum Current Drain-gate breakdown Knee Voltage Load line for signal swing VDS School of Engineering & Computer Science

Model Equation Fitting to IV Blue Dots = Measured Red Lines = Simulated School

Model Equation Fitting to IV Blue Dots = Measured Red Lines = Simulated School of Engineering & Computer Science

Pulsed IV Measurements • Static measurements can be inaccurate for RF models. • The

Pulsed IV Measurements • Static measurements can be inaccurate for RF models. • The cause: Slow Thermal and Trapping Processes • Solutions: Pulsed IV and Measurements • Ga. N HEMT Static (Dark Lines) and Pulsed IV (Light Lines) School of Engineering & Computer Science

Pulsed IV Measurement • Measurements are performed during brief (~0. 2 μs) excursions from

Pulsed IV Measurement • Measurements are performed during brief (~0. 2 μs) excursions from a quiescent bias. • The pulses are usually separated by at least 1 ms. • Thermal and trap conditions during the measurement are those of the quiescent bias, as in high-frequency operation. School of Engineering & Computer Science

Trapping Effects • Trapping Effects in MESFETs (Charbonninud et. al): – Substrate Traps –

Trapping Effects • Trapping Effects in MESFETs (Charbonninud et. al): – Substrate Traps – Surface Traps • Electron Capture Fast Process • Electron Emission Slow Process S G Surface Traps D Electron Flow Substrate Traps School of Engineering & Computer Science

Summary of Trap Processes ID Surface Hole Capture (Slow) SLOW PROCESSES Substrate Electron Emission

Summary of Trap Processes ID Surface Hole Capture (Slow) SLOW PROCESSES Substrate Electron Emission (Slow) Surface Hole Capture (Slow) Q FAST PROCESSES Substrate Electron Capture (Fast) Surface Hole Emission (Fast) School of Engineering & Computer Science VDS

Bias-Dependent Trapping Gate: Drain School of Engineering & Computer Science

Bias-Dependent Trapping Gate: Drain School of Engineering & Computer Science

Bias-Dependent FET Model New Parameters School of Engineering & Computer Science

Bias-Dependent FET Model New Parameters School of Engineering & Computer Science

Bias-Dependent FET Model without quiescent dependence: Model with quiescent dependence: Quiescent-bias dependence allows flexibility

Bias-Dependent FET Model without quiescent dependence: Model with quiescent dependence: Quiescent-bias dependence allows flexibility in predicting the IV curves. School of Engineering & Computer Science

Proposed Upcoming Work • Adapt USF bias-dependent approach for use on other desired models.

Proposed Upcoming Work • Adapt USF bias-dependent approach for use on other desired models. • Add time-dependence of capture and emission trapping as well as thermal effects. • Develop a straightforward characterization scheme for the bias and time dependence of thermal and trapping effects. School of Engineering & Computer Science

Partial Jardel Circuit for Drain Traps* To calculations of backgating voltage + Vds(t) _

Partial Jardel Circuit for Drain Traps* To calculations of backgating voltage + Vds(t) _ + Vcont(t) _ *O. Jardel, F. De. Groote, C. Charbonniaud, T. Reveyrand, J. Teyssier, R. Quere, and D. Floriot, “A Drain-Lag Model for Al. Ga. N/Ga. N Power HEMTs, ” IEEE International Microwave Symposium, Honolulu, Hawaii, June 2007. School of Engineering & Computer Science

Radar Power Amplifiers – NRL Proposal • Desire to reduce spectral sidelobes transmitted by

Radar Power Amplifiers – NRL Proposal • Desire to reduce spectral sidelobes transmitted by shipboard radar systems. • Chireix amplifier topology: School of Engineering & Computer Science

Goals and Discussion • Desired Isolation: 100 d. B outside of 40 MHz bandwidth

Goals and Discussion • Desired Isolation: 100 d. B outside of 40 MHz bandwidth Reprinted from J. de Graaf, H. Faust, J. Alatishe, and S. Talapatra, “Generation of Spectrally Confined Transmitted Radar Waveforms, ” Proc. IEEE Conference on Radar, 2006, pp. 76 -83 • The pulsed signal and nonlinear amplifier use causes additional spectral components “spectral regrowth”. School of Engineering & Computer Science

Chireix Amplifier Operation • A method for operating amplifiers with high linearity and efficiency.

Chireix Amplifier Operation • A method for operating amplifiers with high linearity and efficiency. • Based on a trigonometric identity: G cos[ω(t)+arccos(M(t))] PA Phase Modulated Signals G cos[ω(t)-arccos(M(t))] 2 GM(t)cos[ω(t)] PA School of Engineering & Computer Science

Combining Challenges • A summer at microwave frequencies? • Combining Techniques – 180 -degree

Combining Challenges • A summer at microwave frequencies? • Combining Techniques – 180 -degree coupler – Chireix combiner • A three-port network cannot be lossless, reciprocal, and matched at all ports. • Pros and Cons – 180 -degree coupler – matched, reciprocal, and lossy (3 d. B) – Chireix combiner – unmatched, reciprocal, and lossless School of Engineering & Computer Science 24

180 -Degree Coupler Simulations School of Engineering & Computer Science 25

180 -Degree Coupler Simulations School of Engineering & Computer Science 25

Radar PA Combining – Upcoming Work • Proposal to NRL for $170, 000 over

Radar PA Combining – Upcoming Work • Proposal to NRL for $170, 000 over 2 years submitted March 2008 • Study different combining techniques: • Examine rejection for better spectral masks. • Continue simulation studies and eventually implement in hardware design improvements. • Meeting with NRL at USF campus on April 14. School of Engineering & Computer Science

Phase Noise Prediction • Tremendous consequences for system-level design considerations. • Example: Phase Noise

Phase Noise Prediction • Tremendous consequences for system-level design considerations. • Example: Phase Noise in 64 -PSK Amplifier • Transistor 1/f noise is a source of phase noise. • Project Goal: Predicting phase noise accurately in circuits through accurate modeling of 1/f noise. School of Engineering & Computer Science

Demonstration Circuits • Linear Amplifier – Test phase noise prediction at multiple bias currents.

Demonstration Circuits • Linear Amplifier – Test phase noise prediction at multiple bias currents. – Si BJT, Si. Ge HBT. – Designed circuits presently in test phase. • Frequency Multiplier – Test phase noise prediction due to self-biasing in large-signal operation. – Si BJT, Si. Ge HBT. – Circuits presently in design phase. School of Engineering & Computer Science

Microwaves and Bio – NSF Proposal In collaboration with: School of Engineering & Computer

Microwaves and Bio – NSF Proposal In collaboration with: School of Engineering & Computer Science

Biological Motivation • Tissue composition can often be investigated through permittivity measurements: • Relative

Biological Motivation • Tissue composition can often be investigated through permittivity measurements: • Relative Permittivity Shows Three Dispersions: Reprinted from H. Schwan, “Electrical Characteristics of Tissues, ” Biophysik, 1963, Vol. 1, No. 3, pp. 198 -208 – Alpha Dispersion – Beta Dispersion – Gamma Dispersion School of Engineering & Computer Science

Dispersions • Alpha Dispersion – In k. Hz Range – Ionic diffusion (Foster and

Dispersions • Alpha Dispersion – In k. Hz Range – Ionic diffusion (Foster and Schwan) – Measurable with Low Frequency Impedance Analyzer • Beta Dispersion – Between 1 and 100 MHz – Capacitive charging of the cell membrane (Tamura et al. ) – Can measure above this with microwave techniques • Delta Dispersion – Varying causes – Between 0. 1 and 3 GHz (Foster and Schwan) – Measurable by microwave techniques • Gamma Dispersion – Dipole orientation in water molecules changes (Foster and Schwan) – 20 to 25 GHz (depending on temperature) – Measurable by microwave techniques School of Engineering & Computer Science

Measuring the Water Content of Cells • Above the Beta Dispersion, the cell membrane

Measuring the Water Content of Cells • Above the Beta Dispersion, the cell membrane (a capacitor) appears invisible to the electrical signal. • The measured impedance above the Beta Dispersion is heavily dependent upon the water content of the cells. • Cancer cells often have a higher water content than healthy cells (Foster and Schwan). School of Engineering & Computer Science

Cell Culture Measurements • Cell cultures often have an impedance of 1 kΩ or

Cell Culture Measurements • Cell cultures often have an impedance of 1 kΩ or higher in the microwave range. • Measuring high impedances with high precision using reflection coefficients is difficult: School of Engineering & Computer Science

Microwave Measurement Technique for High Impedances • New technique developed at Czech Technical University:

Microwave Measurement Technique for High Impedances • New technique developed at Czech Technical University: Reprinted from M. Randus and K. Hoffman, “A Simple Method for Extreme Impedances Measurement, ” 70 th Automatic RF Techniques Group (ARFTG) Conference, Tempe, Arizona, November 2007. School of Engineering & Computer Science

Future Research • Presently constructing system to verify method of Randus and Hoffman on

Future Research • Presently constructing system to verify method of Randus and Hoffman on large impedances. • Modify cell culture impedance measurement setup of Prof. Shekhar Bhansali to perform microwave measurements. • Examine applications (i. e. clinical detection of cancer) School of Engineering & Computer Science

Conclusions • An ambitious first-year approach has allowed expansion of USF’s modeling and characterization

Conclusions • An ambitious first-year approach has allowed expansion of USF’s modeling and characterization program into design and biological applications. • A good industry base has been built, and agency proposals are being generated. • A significant number of publications, as well as additional agency and industry proposals, are expected to be generated from the present work. School of Engineering & Computer Science

Acknowledgments • Larry Cohen and Jean de Graaf, Naval Research Laboratory • Christopher Reul,

Acknowledgments • Larry Cohen and Jean de Graaf, Naval Research Laboratory • Christopher Reul, USF • Brent Seward, USF • Nathaniel Varney, USF • Dorielle Price, USF • Dr. Shekhar Bhansali, USF • Dr. Larry Dunleavy, USF and Modelithics, Inc. • Martin Randus, Czech Technical Institute • Dr. Karel Hoffman, Czech Technical Institute School of Engineering & Computer Science

Thank you for your time and attention! School of Engineering & Computer Science

Thank you for your time and attention! School of Engineering & Computer Science