ICsemiconductorsICDOS Chee Wee Liu DistinguishedChair Professor IEEE Fellow




































- Slides: 36

IC/semiconductors(IC+DOS) Chee Wee Liu (劉致為) Distinguished/Chair Professor / IEEE Fellow, National Taiwan University cliu@ntu. edu. tw http: //nanosioe. ee. ntu. edu. tw High mobility/High K 3 Dx 3 D DRAM/MRAM CIS/IGZO PPACR (performance, power, area, cost reliability) 1

• CVD磊晶為基礎,研發Si. Ge/Ge. Sn 元件、 stacked 3 D電晶體、MTJ/DRAM記憶體、 IGZO TFT、暨光電元件。 • 其優異的CVD磊晶技術,創下了矽電子遷 移率世界紀錄2, 400, 000 cm 2/Vs;並且將 CVD Ge. Sn通道的電洞遷移率超越MBE磊 晶。 • Ge及dislocation對strained Si (90 nm)產 生的flicker noise。 • 第一個stacked Ge. Si channel n. FET、 stacked Ge. Sn channel p. FET (2/1 nm) • 第一個Si/Si. Ge/Si. C MIS LED/detectors。 2

• 570多篇論文(含 228+期刊,25 IEDM及3 VLSI) • 38 US patents, 38 Taiwan ROC patents, 2 China patents • 5096次以上的論文被引用。 • 已畢業至少 34博士生和128碩士生,並現有15位 博士及10位碩士生。 • 畢業博士生有五位任教職(1 NTU, 1 NTNU, 1 NCHU, 1 NDHU及1 NJUST)及三位博後任教職(1 NTU, 1 NCU, 1 CGU)。 • NTU is the winner: TSMC/MTK/Intel/UMC/VG (Senior Director) • Graduate admission: Berkeley, MIT • US:coding 3

IEDM 2019 1. “First Stacked Ge 0. 88 Sn 0. 12 p. GAAFETs with Cap, LG=40 nm, Compressive Strain of 3. 3%, and High S/D Doping by CVD Epitaxy Featuring Record ION of 58 m. A at VOV=VDS= -0. 5 V, Record Gm, max of 172 m. S at VDS= -0. 5 V, and Low Noise, ” accepted by International Electron Devices Meeting (IEDM) 2019, p. 29 -5, San Francisco, USA, December 7 -11, 2019. 2. Chien-Te Tu, Yu-Shiang Huang, Fang-Liang Lu, Hsiao-Hsuan Liu, Chung-Yi Lin, Yi. Chun Liu, and C. W. Liu, “First Vertically Stacked Tensily Strained Ge 0. 98 Si 0. 02 n. GAAFETs with No Parasitic Channel and LG = 40 nm Featuring Record ION = 48 m. A at VOV=VDS=0. 5 V and Record Gm, max(m. S/mm)/SSSAT(m. V/dec) = 8. 3 at VDS=0. 5 V, ” accepted by International Electron Devices Meeting (IEDM) 2019, p. 29 -3, San Francisco, USA, December 7 -11, 2019. 3. Min-Hung Lee, Kuan-Ting Chen, Chun-Yu Liao, Guo-Yu Siang, Chieh Lo, Hong. Yu Chen, Yi-Ju Tseng, Chung-Yu Chueh, Ching Chang, Yen-Yun Lin, Yu-Jun Yang, F-C Hsieh, Shu-Tong Chang, Ming-Han Liao, Kai-Shin Li, and C. W. Liu, “Bi-directional Sub-60 m. V/dec, Hysteresis-Free, Reducing Onset Voltage and High Speed Response of Ferroelectric-Anti. Ferroelectric Hf 0. 25 Zr 0. 75 O 2 Negative Capacitance FETs, ” accepted by International Electron Devices Meeting (IEDM) 2019, p. 23 -6, San Francisco, USA, December 7 -11, 2019. 4. Ya-Jui Tsou, Chia-Che Chung, Jih-Chao Chiu, Huan-Chi Shih, and C. W. Liu, “Thermal and Reliability Modeling of Fin. FET-Driven STT-p. MTJ Array Considering Mutual Coupling, 3 D Heat Flow, and BEOL Effects, ” accepted by IEDM MRAM Poster, San Francisco, California, Dec. 7 -11, 2019. 5. Jih-Chao Chiu, Ya-Jui Tsou, Huan-Chi Shih, and C. W. Liu, “Write Error Rate Prediction of STT-p. MTJ Considering Process Variations and Thermal Fluctuations, ” 4 accepted by IEDM MRAM Poster, San Francisco, California, Dec. 7 -11, 2019.

• Less than 2 yrs: none • 2 - 5 yrs: 5 G + AI chips ( AI Paa. S, DNN), IOT later, ADAS 5

Future: AI, Big Data, Connectivity(5 G/6 G) Hardware : IC/Semiconductor tsmc, MTK, APPLE Software: coding Google, MS, AMAZON, FB 6

HARDWARE MTK Qualcomm Apple Foundry Hi Si 7


Research topics • CMOS: 1/2/3 nm Stacked Nanosheet /Vertical channel (1 nm) Thermal modeling SRAM • MRAM/FEFET • CMOS image sensor • DRAM • IGZO 9

Saturday 2 -4 pm free course • • • Free handout Free textbook Free schedule Cyclic No need to register for special project course • Welcome to join 2 -4 pm on Sat • Snacks, Pizza ? ? • Research involvement: 4000 -8000 NT

Tsmc Technology Portfolio Available ● In Development ★ NTU Research ● SWIR MRAM ★ Ge. Sn 2 nm ★ 3 nm ★ Ge. Si 5 nm ● 7 nm ● 10 nm ● ● 16/12 nm ● 20 nm ● ● ● 22 nm ● ● 28 nm ● ● ● 40 nm ● ● ● ● 65/55 nm ● ● 90/80 nm ● ● ● 0. 13/0. 11 μm ● ● ● ● 0. 18/0. 15 μm ● ● ● ● 0. 25 μm ● ● ● ● 0. 35 μm ● ● ● ● >0. 5 μm ● ● ● ● MEMS Image Sensor Embedded NVM RF Logic Analog High Voltage Embedded DRAM • More on Backend transistor (IGZO)/ DRAM/Si photonics BCD-Power IC 11

2019 F Top 15 Semiconductor Sales Leaders ($M, Including Foundries) IC 2018 Total O-S-D 2018 Total Semi 2019 F Total Semi 2019/2018 % Total IC 2019 F Total O-S -D U. S. 69, 880 0 69, 880 69, 832 0% Samsung South Korea 75, 698 2, 843 78, 541 51, 750 3, 860 55, 610 -29% 4 TSMC (1) Taiwan 34, 208 0 34, 208 34, 503 0 34, 503 1% 4 3 SK Hynix South Korea 36, 200 567 36, 767 22, 291 595 22, 886 -38% 5 5 Micron U. S. 30, 930 0 30, 930 19, 960 -35% 6 6 Broadcom Inc. (2) U. S. 16, 454 1, 735 18, 189 15, 917 1, 789 17, 706 -3% 7 7 Qualcomm (2) U. S. 16, 385 0 16, 385 14, 300 0 14, 300 -13% 8 8 TI U. S. 13, 908 946 14, 854 12, 705 842 13, 547 -9% 9 9 Toshiba/Kioxia (3) Japan 12, 293 1, 508 13, 801 9, 839 1, 437 11, 276 -18% 10 10 Nvidia (2) U. S. 11, 951 0 11, 951 10, 514 0 10, 514 -12% 11 15 Sony Japan 627 7, 088 7, 751 878 8, 674 9, 552 24% 12 11 ST Europe 6, 628 2, 991 9, 619 7, 241 2, 215 9, 456 -2% 13 13 Infineon Europe 5, 465 3, 745 9, 210 5, 366 3, 580 8, 946 -3% 14 12 NXP Europe 8, 429 978 9, 407 7, 969 888 8, 857 -6% 15 14 Media. Tek (2) Taiwan 7, 891 0 7, 891 7, 948 0 7, 948 1% 346, 947 22, 401 369, 348 291, 013 23, 880 314, 893 -15% 2019 F 2018 Rank 1 2 Intel 2 1 3 Company Headquarters Top-15 Total 2018 Total 2019 F (1) Foundry (2) Fabless (3) Formerly Toshiba Memory Source: Company reports, IC Insights’ Strategic Reviews database • • D-O-S: Discrete components, Optoelectronic, Sensor Semi = IC + O-S-D 2018 475 B USD, 2019 (E) 429 B USD 2018 TW GDP: 590 B USD Change

Beyond Fin. FET: Gate All Around (3/2 nm node) l Defect control - laser annealing - defect etching to form GAA) l Contact resistivity - high doping l Roughness - junctionless l Gate stack -Al 2 O 3/Ge. O 2 (Not good enough)

Beyond Fin. FET: stacked GAA (2/1 nm) • Epi -strain engineering: fully compressive strain for stacked Ge. Sn channels -defect and dislocation: defect confinement at Ge/SOI interface -inter-channel uniformity: sacrificial layers design • Channel release -etching selectivity: H 2 O 2 etching -Inter-channel uniformity & line edge roughness: sacrificial layers etching with ultrasonic assist technique -effective mass & strain after channel release: biaxial to uniaxial strain & microbridge effect • S/D: -high doping -low parasitic resistance èOptimization for in-situ doped Ge. Sn S/D and Pt. Ge. Sn/Pt. Ge formation to decrease parasitic resistance are achieved. • Low thermal budget gate stacks -low Dit of IL, high-k material, and low dispersion: Ti. N/Zr. O 2/Al 2 O 3+RTO with 400 o. C thermal budget • Ge. Si/Ge. Sn channels 14

Our solution to stacked channel Channel release by H 2 O 2 etching Tilt 52 o Tilt 52 • Pure Cl 2 or HBr anisotropic etching to form the finstructure. • H 2 O 2 wet etching further removes the Ge sacrifacial layer to form stacked Ge. Sn wires. • Sn. Ox remains on Ge. Sn surface to achieve high etching selectivity. o

Vertical Channel Transistor Vertical Nanosheet Transistor Variability control RMG: Replacement Metal Gate • Shrink the channel diameter/width without impacting S/D resistance. • Stress purpose • A thin barrier (Ru) can lower the resistance enables simple rout to access the bottom (S/D) region • The MRAM cell size is dominated by the access transistor. • VFET can further scale the MRAM cell size. Trong Huynh-Bao et al. , DAC, 2019

Optoelectronic • Optoelectronic market continues to enjoy solid growth rates. 17

Analog IC • The analog market continues to play a steady role in the IC industry 18

Sensor • After a rapid growth in 2017, sales growth in the 2018 year for large and diverse actuator product category slowed. 19

Discrete • PA 20

Major product Categories • The market for each major product is forecast to increase 21

MOS Memory • 2019 F MOS Memory Market and Units include DRAM, SRAM and Flash 22

DRAM • DRAM Marketshare (2013 -2019 F) of DDR, DDR 2, DDR 3, DDR 4 23

Major Process Technology Innovations Are Pilling Up 202 0 2010 2000 1990 1980 Nanocarbon Technologies Ge and/or III-V Channels EUV Lithography Air Gaps Thru-Silicon Vias ETSOI (or FD-SOI) Multi-Gate Transistors DP and Inverse Lithography Metal Gates/High-k Gate Oxides In the 2000 s and 2010 s, the industry is being forced to adopt many major innovations in process technology. Immersion Lithography Low-K Insulators Si. Ge Silicon-on-Insulator Copper Interconnects Deep UV Lithography Step-and-Scan Lithography CMP and STI Multiple Metal Layers In the 1970 s, 1980 s, and 1990 s there were only one or two major process technology advancements in each decade. Step-and-Repeat Lithography Projection Printing 1970 1960 Ion Implantation Surface Passivation CMOS Architecture MOSFET Planar Process Oxide Masking In the early years, one would expect several significant advancements and innovations. Source: IC Insights 24

Optoelectronic • Optoelectronic market continues to enjoy solid growth rates.

Sensor • After a rapid growth in 2017, sales growth in the 2018 year for large and diverse actuator product category slowed.

Discrete • In 2018, shortages of power transistors, diodes, and other discretes boosted sales.

CMOS image sensor (CIS) • 2019 revenue: 15 B USD, CAGR: 10% • Silicon photonics: 1 B USD (2023) 28

Applications • Night vision: 850 nm, 940 nm, 1310 nm, 1550 nm • Face ID: 940 nm, 1550 nm • Lidar: 850/905 nm, 1550 nm (high speed) • 現在silicon到 940 nm, 未來用Ge • Ge/Ge. Si/Ge. Sn epi/detector/sensor array 29

Epi structure: p+Si/p+Si. Ge/p+Si DTI TG DTI FD n well (active layer) (Si Si. Ge/Ge/Ge. Sn) DTI p substrate • To extend the wavelength, Ge. Si/Ge/Ge. Sn can be used for active layer 30

Magnetic Tunnel Junction (MTJ) Parallel state (P) Mg. O Anti-parallel state (AP) Free layer Mg. O Pinned layer Tunnel magnetoresistance ratio (TMR) = (RAP - RP)/RP x 100% • Magnetic tunnel junction (MTJ) – Two ferromagnetic layers (e. g. Co. Fe. B) sandwich a tunnel barrier (Mg. O) • • • Free layer (FL): The magnetization can be flipped. Pinned layer (PL): The magnetization should be stable. P state: low resistance (‘ 0’); AP state: high resistance (‘ 1’) 31

RCAT H L Increase the channel length Planar transistor H L L+2 H RCAT • Channel length of transistor increases by recessed channel to prevent short channel effect. • Planar transistor 1 -dimensional channel • RCAT(Recessed channel Access Transistor) 2 dimensional channel • Channel length: RCAT (L+2 H) > Planar transistor L 32

IGZO (mobility >10) l Amorphous In. Ga. Zn. O (a-IGZO) TFT has the merits of high field-effect mobility, low processing temperature, and large area uniformity as compared to the conventional a-Si TFTs. Research l Material Characteristic of IGZO l Device Electrical Characteristics Ø Single/Double/Triple Layers Ø Optical Bandgap Ø Valence Band Offset (EF - EV) l Reliability Test of IGZO Ø Band Alignment with Assumption of ΔEC Ø Positive Bias Temperature Stress (PBTS) Ø Oxygen Defect Analysis by XPS Ø Negative Bias illumination Stress (NBIS) Ø Hall Measurement Ø Hot Carrier Stress (HCS) 33

IGZO applications • 高速、低耗電、大尺寸 • Good for OLED driver • Funded by Innolux 34

3 D IC (package) l l l Scaling faces physical and cost limits. Size reduction High interconnect density n n l Hetero-integration n 35 Faster Less power consumption TSMC course Memory, logic, optical, MEMS, RF chip

High Bandwidth Memory Source: SK Hynix • Stacked DRAM dies, connected by TSVs • Size reduction, but high density HBM 1 (256 GB/sec for HBM 2)
Chee wee liu
Chee ming liu
Ieee fellow requirements
Ieee fellow nomination
Líu líu lo lo ta ca hát say sưa
Alex liu cecilia liu
Promotion from assistant to associate professor
Kwan sun ming v chak chee hing
Dr chee kim
Berney v tronoh mines
Ohtc heat exchanger
Chee
Dr chee kim
Yu-chee tseng
Chee
Lee wee sun
Rose wee
Wee-foal-checker
Cs4243 form
Lee wee sun
Tan wee tin
Dr wong teck wee
Object removal
Ta wee
Egg types
Parable of the gold coins
Zechariah was a wee little man
Wee foal
Jk annand nessie
Rachel wee age
Petalinux tftp
Fellow lpkia
Technical fellow microsoft
Segment routing ipv6
Paul harris fellow certificate template
Odd fellow orden
Mun policy statement