histograms Mapping notation histograms Mapping notation 1 0






























![convolution kernels • 2) derivative i. e. , [ 1 -1 ] convolution kernels • 2) derivative i. e. , [ 1 -1 ]](https://slidetodoc.com/presentation_image_h2/8929692c2166baa46a3c0e750484c714/image-31.jpg)
![convolution kernels • 2) derivative i. e. , [ 1 -1 ] – Derived convolution kernels • 2) derivative i. e. , [ 1 -1 ] – Derived](https://slidetodoc.com/presentation_image_h2/8929692c2166baa46a3c0e750484c714/image-32.jpg)
![convolution kernels • 2) derivative i. e. , [ 1 -1 ] – Derived convolution kernels • 2) derivative i. e. , [ 1 -1 ] – Derived](https://slidetodoc.com/presentation_image_h2/8929692c2166baa46a3c0e750484c714/image-33.jpg)
![convolution kernels • 2) derivative i. e. , [ 1 -1 ] – Derived convolution kernels • 2) derivative i. e. , [ 1 -1 ] – Derived](https://slidetodoc.com/presentation_image_h2/8929692c2166baa46a3c0e750484c714/image-34.jpg)

![move to 2 D • average: – Trivial. ¼ [1 1], or other extensions move to 2 D • average: – Trivial. ¼ [1 1], or other extensions](https://slidetodoc.com/presentation_image_h2/8929692c2166baa46a3c0e750484c714/image-36.jpg)

- Slides: 37
histograms • Mapping notation
histograms • Mapping notation 1 0 Histogram normalisation
histograms • Mapping notation 1 1 = 0 0 Histogram normalisation Histogram Normalisation filter
histograms • Mapping notation 1 1 = 0 0 Histogram normalisation Normalisation filter Histogram
histograms • Mapping notation 1 1 count = 0 0 Histogram normalisation Intensity Histogram Normalisation filter
histograms • Mapping notation Output intensity 1 count = 0 Histogram normalisation Intensity Histogram 1 0 Input intensity Normalisation filter
histograms • Mapping notation 1 0 Histogram normalisation 1 1 0 0
histograms • Mapping notation 1 0 Histogram normalisation 1 1 0 Emphasize high intensity 0
histograms • Mapping notation 1 0 Histogram normalisation 1 1 0 Emphasize high intensity 0 Emphasize low intensity
histogram equalization • 1, get histogram
histogram equalization • 1, get histogram
histogram equalization • 1, get histogram • 2, get cumulative histogram
histogram equalization • 1, get histogram • 2, get cumulative histogram
histogram equalization • 1, get histogram • 2, get cumulative histogram • 3, use cumulative as filter
histogram equalization • 1, get histogram • 2, get cumulative histogram • 3, use cumulative as filter
histogram equalisation
histogram equalisation
let‘s do one by hand • Data= [ 4 2 2 1 0 1 0 5 7]
let‘s do one by hand • Data= [ 4 2 2 1 0 1 0 5 7 ] • Histogram = [ 4 4 2 0 1 1 0 1 ] just count pixel frequencies
let‘s do one by hand • Data= [ 4 2 2 1 0 1 0 5 7 ] • Histogram = [ 4 4 2 0 1 1 0 1 ] • Cumulative = [ 4 8 10 10 11 12 12 13] C(0) = H(0), C(X) = C(X-1) + H(X)
let‘s do one by hand • • Data= [ 4 2 2 1 0 1 0 5 7 ] Histogram = [ 4 4 2 0 1 1 0 1 ] Cumulative = [ 4 8 10 10 11 12 12 13] Normalized = [ 0. 3 0. 6 0. 85 0. 9 1 ] range from 0. . 1, as a percentage of intensity. Nc(X) = C(X)/Pixel. Count
let‘s do one by hand • • • Data= [ 4 2 2 1 0 1 0 5 7 ] Histogram = [ 4 4 2 0 1 1 0 1 ] Cumulative = [ 4 8 10 10 11 12 12 13] Normalized = [ 0. 3 0. 6 0. 85 0. 9 1 ] new = [ 6 6 6 4 2 4 2 6 7 ] N(x) = Nc(D(X))*Intensity. Max
let‘s do one by hand • • • Data= [ 4 2 2 1 0 1 0 5 7 ] Histogram = [ 4 4 2 0 1 1 0 1 ] Cumulative = [ 4 8 10 10 11 12 12 13] Normalized = [ 0. 3 0. 6 0. 85 0. 9 1 ] new = [ 6 6 6 4 2 4 2 6 7 ] Notice how contrast between few number of pixels decreased, but increased for most pixels
practice • Do practice sheet • Email for solution, ill post it.
convolution kernels • Can do linear operations • 1) average
convolution kernels • Can do linear operations • 1) average. . i. e. , ½[1 1]
convolution kernels • Can do linear operations • 1) average. . i. e. , ½[1 1] – example: – ½ [1 1] * [ 2 0 2 ] = [ 1 1 1 ]
convolution kernels • Can do linear operations • 1) average. . i. e. , ½[1 1] – example: – ½ [1 1] * [ 2 0 2 ] = [ 1 1 1 ] – add to 1 , no gain – other averages… 1/3 [ 1 1 1 ], ¼[ 1 2 1 ], etc. – Note about gaussian average
convolution kernels • Can do linear operations • 1) average. . i. e. , ½[1 1] – example: – ½ [1 1] * [ 2 0 2 ] = [ 1 1 1 ] – add to 1 , no gain – other averages… 1/3 [ 1 1 1 ], ¼[ 1 2 1 ], etc. – tones down high-frequency data, similar to lowpass filter in frequency space.
convolution kernels • 2) derivative i. e. , [ 1 -1 ]
convolution kernels • 2) derivative i. e. , [ 1 -1 ] – Derived from calculus
convolution kernels • 2) derivative i. e. , [ 1 -1 ] – Derived from calculus – example: – [1 -1] * [ 1 2 3 4 5 6 ] = [ 1 1 1 -6 ]
convolution kernels • 2) derivative i. e. , [ 1 -1 ] – Derived from calculus – example: – [1 -1] * [ 1 2 3 4 5 6 ] = [ 1 1 1 -6 ] – Why does this find edges?
Examples!
move to 2 D • average: – Trivial. ¼ [1 1], or other extensions [1 1]
move to 2 D • derivative a little more complex. • Several varients. Next class.