Highway Materials Soils and Concrete Aggregates Soil Definition

  • Slides: 57
Download presentation
Highway Materials, Soils, and Concrete Aggregates • Soil Definition (Engineering) – “refers to all

Highway Materials, Soils, and Concrete Aggregates • Soil Definition (Engineering) – “refers to all unconsolidated material in the earth’s crust, all material above the bedrock” • mineral particles (gravel, sand, silt, clay) • organic material (top soil, marshes) • Aggregates – mineral particles of a soil – specifically, granular soil group ENCI 579 4 • gravel, sand, silt 1

Highway Materials, Soils, and Concrete Aggregates • Granular Soil Group (Aggregates) – Physical weathering

Highway Materials, Soils, and Concrete Aggregates • Granular Soil Group (Aggregates) – Physical weathering • • action of frost, water, wind, glaciers, plant/animals particles transported by wind, water, ice soils formed are called granular soil type “grains are similar to the original bedrock” – Larger grain sizes than clays – Particles tend to be more or less spheres/cubes – Bound water is small compared to overall mass ENCI 579 4 2

ENCI 579 4 3

ENCI 579 4 3

Highway Materials, Soils, and Concrete Aggregates • Granular Soil Group (Aggregates) – ability to

Highway Materials, Soils, and Concrete Aggregates • Granular Soil Group (Aggregates) – ability to achieve greater densities • well graded granular material – increased soil strength – lower permeability – reduced future settlement • These improvements dictate the use of aggregates in pavement layers where wheel loads are greater ENCI 579 4 4

Highway Materials, Soils, and Concrete Aggregates • In combination with asphalt cement or portland

Highway Materials, Soils, and Concrete Aggregates • In combination with asphalt cement or portland cement to form asphalt concrete or cement concrete respectively • In subbases and bases of a roadway structure • drainage structures • concrete blocks ENCI 579 4 5

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates • Basic properties of

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates • Basic properties of these aggregates • Tests used to evaluate these properties ENCI 579 4 6

Highway Materials, Soils, and Concrete Aggregates • Aggregate Sources – natural sand or gravel

Highway Materials, Soils, and Concrete Aggregates • Aggregate Sources – natural sand or gravel deposits * – crushed rock * – slag and mine refuse – rubble and refuse – artificial and processed materials – pulverized concrete and asphalt pavements – other recycled and waste materials ENCI 579 4 7

Highway Materials, Soils, and Concrete Aggregates • Natural sand gravel deposits – sand gravel

Highway Materials, Soils, and Concrete Aggregates • Natural sand gravel deposits – sand gravel pits – sand gravel soils that have been naturally sorted to eliminate most of the silt or clay sizes then deposited in: • glacier formations (eskers, outwash plains) • river deposits • beaches of current and previous lakes and seas ENCI 579 4 8

Highway Materials, Soils, and Concrete Aggregates • Sand / Gravel Pit Development – Stripping

Highway Materials, Soils, and Concrete Aggregates • Sand / Gravel Pit Development – Stripping of topsoil, vegetation… from surface – Excavation of material • material is loose - front end loaders – Crushing of the material • larger size aggregate is broke down to desired size • crushed gravel is considered high quality aggregate • washing of aggregate cleans dust removes silt/clay – Type of material depends on bedrock source ENCI 579 4 • Limestone, sandstone, granite, etc. 9

Highway Materials, Soils, and Concrete Aggregates • Crushed Rock – “Type of aggregates produced

Highway Materials, Soils, and Concrete Aggregates • Crushed Rock – “Type of aggregates produced from quarries depends on the type of bedrock” – Classes of Rocks • Igneous rocks • Sedimentary rocks • Metamorphic rocks ENCI 579 4 10

Highway Materials, Soils, and Concrete Aggregates • Crushed Rock – Igneous Rocks • Original

Highway Materials, Soils, and Concrete Aggregates • Crushed Rock – Igneous Rocks • Original bedrock formed from the cooling of molten material • Coarse grained igneous rock (granite) cooled slowly • Fine grained igneous rocks (basalt) cooled rapidly – Sedimentary Rocks ENCI 579 4 • Solidification of chemical or mineral sediments deposited under ancient seas • Layered since original material was deposited in this 11 manner

Highway Materials, Soils, and Concrete Aggregates • Crushed Rock – Sedimentary Rocks • •

Highway Materials, Soils, and Concrete Aggregates • Crushed Rock – Sedimentary Rocks • • • ENCI 579 4 Limestone Dolomite Shale Sandstone Chert Conglomerate Calcium Carbonate Calcium/Magnesium Carbonate Clay Quartz Fine sand Gravel 12

Highway Materials, Soils, and Concrete Aggregates • Crushed Rock – Metamorphic Rocks – Igneous

Highway Materials, Soils, and Concrete Aggregates • Crushed Rock – Metamorphic Rocks – Igneous or Sedimentary rocks that have been metamorphosed due to intense heat and pressure • • ENCI 579 4 Slate Marble Quartzite Gneiss shale limestone sandstone granite 13

Highway Materials, Soils, and Concrete Aggregates • Crushed Rock – Igneous and Metamorphic rocks

Highway Materials, Soils, and Concrete Aggregates • Crushed Rock – Igneous and Metamorphic rocks are very hard and make an excellent source for aggregates – Limestone and Dolomite are common sedimentary rocks, are softer than igneous rocks but are acceptable for aggregates – Shale primarily composed of clay grains is weak and disintegrates easily – Chert also disintegrates easily ENCI 579 4 14

Highway Materials, Soils, and Concrete Aggregates • Quarry Pit Development – Opening and Stripping

Highway Materials, Soils, and Concrete Aggregates • Quarry Pit Development – Opening and Stripping of the face of the quarry – Blasting of rock with dynamite into sizes that can be transported – Crushing of rock into the required aggregate sizes ENCI 579 4 15

Highway Materials, Soils, and Concrete Aggregates • Slag and Mine Refuse – Slag is

Highway Materials, Soils, and Concrete Aggregates • Slag and Mine Refuse – Slag is a waste material resulting from the treatment of ore to produce iron, steel, nickel, . . • Blast furnace slag from iron mills is a common aggregate – Mine tailings can also be used for aggregates • Rubble and Refuse – recycling of pulverized concrete from structures – recycled asphalt pavements in base courses ENCI 579 4 – recycled rubber, crushed glass in base courses 16

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates – Fine Aggregate •

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates – Fine Aggregate • aggregate particles mainly between the 4. 75 mm size and the 75 um sieve. – Coarse Aggregate • aggregate particles mainly larger than 4. 75 mm – Pit Run • aggregate from a sand or gravel pit with no processing ENCI 579 4 17

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates – Crushed Gravel •

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates – Crushed Gravel • pit gravel (or sand) that has been put through a crusher either to break the rounded gravel particles into smaller sizes or to produce rougher surfaces – Crushed Rock • aggregate from the crushing of bedrock. All particles are angular and not rounded as in gravel – Screenings ENCI 579 4 • chips, dust, powder that are produced from crushing 18

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates – Concrete Sand •

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates – Concrete Sand • sand that has been washed to remove dust and fines – Fines • silt, clay, or dust particles smaller than 75 um usually the undesirable impurities in aggregates ENCI 579 4 19

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates – Nominal Size •

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates – Nominal Size • Not economical to have 100% of the particles of an aggregate be within a specified size range. • Reduce as much reject as possible from a pit in order to efficiently use the material resources of a pit • Usually 5% - 10% of the aggregate particles can be allowed to be larger or smaller than specs ENCI 579 4 20

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates – Nominal Size •

Highway Materials, Soils, and Concrete Aggregates • Types of Aggregates – Nominal Size • Coarse aggregates 19 -4. 75 mm nominal aggregate • Fine aggregate 4. 75 mm nominal aggregate – Clear • a single size coarse aggregate is called clear. Most of the particles are between the specified maximum size and a minimum size which is defined as onehalf of the maximum • 19 mm clear aggregate ENCI 579 4 21

Highway Materials, Soils, and Concrete Aggregates • Aggregate Properties – Gradation (grain size analysis)

Highway Materials, Soils, and Concrete Aggregates • Aggregate Properties – Gradation (grain size analysis) • grain size distribution for highway bases and asphalt mixes that will provide a dense strong mixture • ensure that the voids between the larger particles are filled with medium particles. The remaining voids are filled with still smaller particles until the smallest voids are filled with a small amount of fines. • Ensure maximum density and strength using a maximum density curve ENCI 579 4 22

Highway Materials, Soils, and Concrete Aggregates Theoretical Maximum Density Curves • Fuller Maximum Density

Highway Materials, Soils, and Concrete Aggregates Theoretical Maximum Density Curves • Fuller Maximum Density Curve P = (d/D)0. 5 P = % passing sieve size ‘d’ and ‘D’ represents the maximum sieve size (100% passing) • Federal Highway Administration P = (d/D)0. 45 – ENCI 579 4 plotted on semi-log paper where sieve sizes are raised to power 0. 45 23

Highway Materials, Soils, and Concrete Aggregates ENCI 579 4 24

Highway Materials, Soils, and Concrete Aggregates ENCI 579 4 24

Highway Materials, Soils, and Concrete Aggregate Gradations • Strength or resistance to shear failure

Highway Materials, Soils, and Concrete Aggregate Gradations • Strength or resistance to shear failure in road bases and pavements is increased greatly if the mixture is dense graded ENCI 579 4 25

Highway Materials, Soils, and Concrete Aggregate Gradations a) larger particles are in contact with

Highway Materials, Soils, and Concrete Aggregate Gradations a) larger particles are in contact with each other developing frictional resistances to shearing failure. Particles are tightly bond together due to the inter-locking effect of smaller particles. This effect is higher in (a) than (b) ENCI 579 4 26

Highway Materials, Soils, and Concrete Aggregate Gradations b) Must limit the amount of fines

Highway Materials, Soils, and Concrete Aggregate Gradations b) Must limit the amount of fines ENCI 579 4 – silt and clay particles are relatively weak – dust on larger aggregates will interface with the aggregate/asphalt bond – Excessive fines in a base or subbase may lead to drainage on frost leaving problems – Excessive fines (smaller aggregates) results in weak structures because larger particles are not in contact with each other strength – Sn (smaller particles) are weaker. Therefore 27 managing % of fines is important.

Highway Materials, Soils, and Concrete Aggregates Washed Sieve Analysis • as a result it

Highway Materials, Soils, and Concrete Aggregates Washed Sieve Analysis • as a result it is important in determining the amount passing the 75 mm sieve • sample is dried and washed, wash water poured out over the 75 um sieve • material retained is returned to the sample for sieve analysis • total amount passing 75 um is equal to the amount lost in washing and % passing 75 um sieve ENCI 579 4 28

Highway Materials, Soils, and Concrete Aggregates Example 4 -1 Mass of sample 446. 7

Highway Materials, Soils, and Concrete Aggregates Example 4 -1 Mass of sample 446. 7 g Mass after washing 414. 1 g Results of dry sieving: Retained in 4. 75 mm 0. 0 g 1. 18 mm 205. 3 g 300 mm 127. 9 g 75 mm 76. 4 g Pan 3. 8 g Find the grain-size distribution: Lost in washing over 75 mm= 446. 7 g - 414. 1 g= 32. 6 g Passing 75 mm in sieving 3. 8 g ENCI 579 4 29 Total finer than 75 mm 36. 4 g

Highway Materials, Soils, and Concrete Aggregates Note: Only 0. 7 g was lost during

Highway Materials, Soils, and Concrete Aggregates Note: Only 0. 7 g was lost during sieving, which is an acceptable loss. ) If a washed sieve analysis is not required, usually for coarse aggregates the procedure for grain-size analysis of soils (see Section 1 -3. 3) is used ENCI 579 4 30

Highway Materials, Soils, and Concrete Aggregates • Aggregate Properties – Gradation (grain size analysis)

Highway Materials, Soils, and Concrete Aggregates • Aggregate Properties – Gradation (grain size analysis) • High density mixtures are important in terms of density and asphalt cement required. Asphalt must coat each particle and fill in most of the void space. If you fill in void space with cheaper material such as aggregates you save asphalt ENCI 579 4 31

Highway Materials, Soils, and Concrete Aggregates • The relative density (specific gravity) and absorption

Highway Materials, Soils, and Concrete Aggregates • The relative density (specific gravity) and absorption of aggregates are important properties especially in asphalt cement mixtures – In the mix designs, it is important to measure accurately the volumes occupied by the aggregate and any water that may have seeped into the pores in the particles. Therefore voids must be considered in the aggregate. ENCI 579 4 32

Highway Materials, Soils, and Concrete Aggregates • For aggregates – Dry Mass = MD

Highway Materials, Soils, and Concrete Aggregates • For aggregates – Dry Mass = MD – Total Mass = MSSD • (dry mass MD + absorbed water MWA) – Bulk Volume = VB • (includes volume of absorbed water) – Net Volume = VN • VN = VB - volume of absorbed water ENCI 579 4 33

Highway Materials, Soils, and Concrete Aggregates • Relative density calculations are made as follows:

Highway Materials, Soils, and Concrete Aggregates • Relative density calculations are made as follows: Apparent RDA = MD/(VN x r. W) Bulk RDB = MD/(VB x r. W) Saturated, surface-dry RDSSD = MSSD/(VB x r W) Percentage absorption % Abs = MWA/MD ENCI 579 4 34

Highway Materials, Soils, and Concrete Aggregates ENCI 579 4 35

Highway Materials, Soils, and Concrete Aggregates ENCI 579 4 35

Highway Materials, Soils, and Concrete Aggregates • Saturated Surface Dry – all permeable pores

Highway Materials, Soils, and Concrete Aggregates • Saturated Surface Dry – all permeable pores filled with water Bulk Volume = VNET + VABSORBED WATER ENCI 579 4 36

Highway Materials, Soils, and Concrete Aggregates ENCI 579 4 37

Highway Materials, Soils, and Concrete Aggregates ENCI 579 4 37

Highway Materials, Soils, and Concrete Aggregates ENCI 579 4 38

Highway Materials, Soils, and Concrete Aggregates ENCI 579 4 38

Highway Materials, Soils, and Concrete Aggregate Properties • Aggregate Hardness (resistant to wear) ENCI

Highway Materials, Soils, and Concrete Aggregate Properties • Aggregate Hardness (resistant to wear) ENCI 579 4 – It is important that aggregates for pavement surfaces not become rounded or polished thereby reducing skid resistance – Load cycles in the pavement structure tend to break aggregates or fines will result changing the gradation (finer) resulting in reduced strength of the pavement structure – Broken aggregates are not cemented into the structure, again reducing strength 39

Highway Materials, Soils, and Concrete Aggregate Properties • Aggregate Hardness (cont’d) – Resistance to

Highway Materials, Soils, and Concrete Aggregate Properties • Aggregate Hardness (cont’d) – Resistance to degradation during mixing, transportation, placing and compacting is important as soft particles may break changing the gradation – Los Angeles Abrasion Test measures the hardness of aggregates – Deval Apparatus – Aggregate Impact Value Test – Polished Stone Value Test ENCI 579 4 40

Highway Materials, Soils, and Concrete Aggregate Properties • Aggregate Durability – resistance to degradation

Highway Materials, Soils, and Concrete Aggregate Properties • Aggregate Durability – resistance to degradation due to cycles of wetting and drying, heating and cooling, and freezing and thawing – freezing and thawing • pore spaces in the aggregate are often saturated and on freezing expands • repeated cycles can cause the aggregate to break • sedimentary rocks are vulnerable because of planes of weakness between layers ENCI 579 4 – Soundness Test Field Performance / Absorption Value 41

Highway Materials, Soils, and Concrete Aggregate Properties • Aggregate Particle Shape/Surface Texture – bonding

Highway Materials, Soils, and Concrete Aggregate Properties • Aggregate Particle Shape/Surface Texture – bonding capability with asphalt cement • particles with rough fractured faces allow a better bond with asphalt cements than rounded smooth particles – resistance to one particle sliding over another – flat, thin, long aggregate particles break easier than cubical particles ENCI 579 4 • Specifications restrict the percentage of long thin particles and require aggregates particles having at least one fractured face 42

Highway Materials, Soils, and Concrete Aggregate Properties • Deleterious Substances – harmful or injurious

Highway Materials, Soils, and Concrete Aggregate Properties • Deleterious Substances – harmful or injurious materials including various types of weak or low quality particles or coatings found on the surface of aggregates • dust (material passing the 75 um sieve) • clay lumps, shale, coal particles, friable particles, chert (weak in terms of freezing and thawing) – These substances effect the bond between cements and aggregates and break easily – Petrographic analysis Sand Equivalency Test ENCI 579 4 43

Highway Materials, Soils, and Concrete Aggregate Properties • Aggregate Crushing Strength – crushing strength

Highway Materials, Soils, and Concrete Aggregate Properties • Aggregate Crushing Strength – crushing strength is the compressive load that aggregate particles can carry before breaking – relatively unimportant for most aggregates strength is higher than the strength of an asphalt mix • Chemical Stability – refers to specific problems due to chemical composition ENCI 579 4 44

ENCI 579 4 45

ENCI 579 4 45

Highway Materials, Soils, and Concrete Aggregate Specifications – Specifications by highway departments takes into

Highway Materials, Soils, and Concrete Aggregate Specifications – Specifications by highway departments takes into account the aggregate properties we just discussed – Requirements for aggregates to be used in bases and subbases differ from aggregates to be used in asphalt mixes – specifications include local experience, availability of materials and type of project ENCI 579 4 46

ENCI 579 4 47

ENCI 579 4 47

Highway Materials, Soils, and Concrete Aggregate Properties Abrasion test: Original mass 5009 g Final

Highway Materials, Soils, and Concrete Aggregate Properties Abrasion test: Original mass 5009 g Final mass 3267 g 5009 -3267 = 34. 8% 5009 Soundness test: Original mass 2649 g 2649 -2115 = 20. 2% Final mass 2115 g 2649 -lower strength fines content -drainage and frost heave potential ENCI 579 4 48 -durability question freeze/thaw resistance

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing • The characterization of an

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing • The characterization of an aggregate source depends on how representative the samples are taken from the aggregates – size of samples are specified – samples should be obtained from the final product if possible, after all the steps in processing and transportation have been completed ENCI 579 4 49

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing – Samples taken from a

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing – Samples taken from a production or discharge should be taken at various times and across the entire cross section of discharge and combined to form one sample – Sampling from stockpiles requires care due to possible segregation of material. Three samples should be taken, one from the top third, middle third, bottom third and combined – Sample tubes for fine aggregate stockpiles ENCI 579 4 should be used, five tube samples combined 50

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing – Samples taken from a

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing – Samples taken from a truck or railway car should be done from a cross sectional trench, three combined to form one sample – Combined samples should be done with equal size component samples – Randomness should be used to determine location or time to eliminate personal bias – Ensure proper identification of the sample – Samples should be properly secured ENCI 579 4 51

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing – Samples tested in the

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing – Samples tested in the lab must be representative of the samples delivered to the lab • Sample Splitting – testing aggregates composed of significant amounts of both coarse and fine aggregates the sample must be split on the 4. 75 mm sieve and the two fractions sieved separately – If not, the amount of sample on the fine sieves may be too great for effective sieving ENCI 579 4 52

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing ENCI 579 4 53

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing ENCI 579 4 53

ENCI 579 4 54

ENCI 579 4 54

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing ENCI 579 4 55

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing ENCI 579 4 55

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing ENCI 579 4 56

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing ENCI 579 4 56

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing ENCI 579 4 57

Highway Materials, Soils, and Concrete Aggregate Sampling and Testing ENCI 579 4 57