High Throughput Analysis of Multicomponent Diffusion Data C

  • Slides: 22
Download presentation
High Throughput Analysis of Multicomponent Diffusion Data C. E. Campbell and W. J. Boettinger

High Throughput Analysis of Multicomponent Diffusion Data C. E. Campbell and W. J. Boettinger National Institute of Standards and Technology Gaithersburg, MD 20899 J-C. Zhao General Electric Company: Global Research Schenectady, NY Ø Need for Multicomponent Diffusion Data & Simulations Ø Review of Multicomponent Diffusion Basics Ø Structure of Diffusion Mobility Database Ø Optimization to obtain mobility parameters: • from measured diffusion coefficients (normal approach) • from measured diffusion profiles (new work) TMS Fall Meeting 2003: The Accelerated Implementation of Materials & Processes November 11, 2003 This work was partially funded by the GE-led DARPA AIM program

AIM Strategy R 88 Ni. Al Ni Ta W Rapid Experiments Material Models Diffusion

AIM Strategy R 88 Ni. Al Ni Ta W Rapid Experiments Material Models Diffusion Multiples Thermo-Calc g Experiments & Characterization DICTRA Precipi-Calc Grain Size Experiments & Characterization g’ Fast Track Grain size Property Models Yield Strength UTS Creep Fatigue Crack Growth

AIM Precipi-Calc simulation of multi-modal g’size distribution for Rene-88 • Validated against GE-Interrupt cooling

AIM Precipi-Calc simulation of multi-modal g’size distribution for Rene-88 • Validated against GE-Interrupt cooling experiments – GE-AE proprietary data: – Literature data: Mao (2001) • Thermodynamics: Thermo-tech Ni-Data • Diffusion: NIST Ni-mobility database • Thermal profile: DEFORM simulation of blank disk Particle Distribution Mean <R> Primary g’ Temp. profile • Assume 3 D spherical particle: need to add elastic energy effects t < 100 s low nucleation rate 100 s < t < 150 s Primary g’ is formed 150 s < t < 350 s Primary g’ grows 400 s Secondary g’ precipitates 500 s Tertiary g’ precipitates Volume Fraction Total # Particles/m 3

Multicomponent Diffusion Review Multicomponent diffusion matrix for René-88 composition using NIST database Fick’s first

Multicomponent Diffusion Review Multicomponent diffusion matrix for René-88 composition using NIST database Fick’s first law for Flux, Ji René-88 at 1100 °C (x 10 -14 m 2/s) Fick’s second law Simulations need to compute the diffusion matrix for each composition encountered in diffusion profile at each time step. Approach enables efficient data storage

Multicomponent Diffusion Database Structure Ø Inputs: – Calphad Thermodynamics – Diffusion experiments (unary, binary,

Multicomponent Diffusion Database Structure Ø Inputs: – Calphad Thermodynamics – Diffusion experiments (unary, binary, ternary systems) • Tracer diffusivity, • Intrinsic diffusivity, • Interdiffusion coefficients/Marker motion Ø Optimize value of mobilities, Mi , for all binaries consistent with available data – Composition and Temperature-dependent – Consistent with estimates of Metastable end members e. g. , FCC W – Optimized using code, DICTRA (Parrot) Ø Add terms if necessary to fit ternary data, etc.

Optimization of Experimental Diffusion Coefficients Estimate Mobility Compare experimental and calculated D Experimental Mobility

Optimization of Experimental Diffusion Coefficients Estimate Mobility Compare experimental and calculated D Experimental Mobility M=f (c, T) diffusion data Simulate diffusion process Adjust Mobility Calculate diffusion Coefficients D = f(c, T) Ni - Al Composition Log (Mobility) Diffusion profile Diffusion Coefficient T = 1150 °C T = 1050 °C T = 950 °C Distance For a binary: Composition

Examples of Optimized Binary Interactions Ni-Al-Cr-Co-Fe-Hf-Nb-Mo-Re-Ta-Ti-W Ni-Co Interdiffusion with Ni 1400 o. C T

Examples of Optimized Binary Interactions Ni-Al-Cr-Co-Fe-Hf-Nb-Mo-Re-Ta-Ti-W Ni-Co Interdiffusion with Ni 1400 o. C T = 1000 o. C Log (D) m 2/s Data from Ustad and Sorum, Phys. Stat. Sol. A 285 (1973) 285. Calculated 1325 o. C 1250 o. C 1200 o. C 1160 o. C Data from Komai et al. , Acta. Mater. , 46, (1998) 4443. Data from Karunaratne et al. , Mater. Sci. Eng. , A 281 (2000) 229. Atomic Percent Ni Weight Fraction Previous assessments: Ni-Al-Cr Engström and Ågren, Z. Metallkd. 87 (1996) 92. Ni-Al-Ti Matan et al. , Acta mater. , 46 (1998) 4587. Ni-Cr-Fe Jönsson, Z. Metallkd 85 (7): 502 -509, 1994. Current assessments: Ni-Co, Ni-Hf, Ni-Mo, Ni-Nb, Ni-Re, Ni-Ta, Ni-Ti, Ni-W Co-Cr, Co-Mo C. E. Campbell, W. J. Boettinger, U. R. Kattner, Acta Mat, 50 (2002) 775

Optimization of Ni-W Tracer diffusivity data Data from Monma et. Al. , JIM, 28

Optimization of Ni-W Tracer diffusivity data Data from Monma et. Al. , JIM, 28 (1964) 197. Interdiffusion data Data from Karuanaratne et al. , Mater. Sci&Eng. 281 (2000) 229. Data from Monma et. Al. , JIM, 28 (1964) 197. Activation energies in the fcc phase Self activation energies Optimized parameters

Challenge: Analysis of Diffusion Multiples /Multicomponent Diffusion Cannot determine diffusion coefficients from experimental data

Challenge: Analysis of Diffusion Multiples /Multicomponent Diffusion Cannot determine diffusion coefficients from experimental data Diffusion Multiple 1 Sample 8 Diffusion Couples R 88 R 95 IN 718 ME 3 IN 100 R 88/R 95 R 88/ME 3 R 95/IN 718//IN 100 R 88/IN 718 R 88/IN 100 R 95/ME 3/IN 100 Experimental data provides composition and phase fraction profiles as functions of distance. Is it possible to directly relate composition profiles to mobility parameters?

Example : René-88/IN-100; 1000 h at 1150 °C gg g+g´ At 1150 °C equilibrium

Example : René-88/IN-100; 1000 h at 1150 °C gg g+g´ At 1150 °C equilibrium phase fractions • René-88: fg = 1 • IN-100: fg = 0. 638 fg’ = 0. 362 Additional g+g’ GE couples analyzed: René-95/ René-88 IN 100/ME 3 IN 100/ René-88 IN 718/IN 100 René-95/IN 718 ME 3/ René-88 R 88 ME 3/IN 718 U 720/IN 718 René-95/U 720/ME 3/ René-95 IN 100/U 720 IN-100 gg g g g IN 100 Experimental data from J. C. Zhao, GE-GR, Schenectady, NY

Diffusion Mobility Database Thermodynamic Database Run DICTRA (via python) Compare composition profiles Input Experimental

Diffusion Mobility Database Thermodynamic Database Run DICTRA (via python) Compare composition profiles Input Experimental File (Composition Profiles) Calculate Error (via Mathematica) Minimize Error f(Mi) Change Mi and z 0, Run new simulation Diffusion Database Optimization Scheme

Test Example: Binary Ni-Co Interdiffusion Coefficient obtained by Boltzmann-Matano method

Test Example: Binary Ni-Co Interdiffusion Coefficient obtained by Boltzmann-Matano method

Programming Elements and Inputs Ø Error Definition: Shift Matano interface Wi(z)= Weighting function Ø

Programming Elements and Inputs Ø Error Definition: Shift Matano interface Wi(z)= Weighting function Ø Currently set to equal 1 Ø z 0 = Error associated with location of Matano plane Ø Change selected mobility parameters a b

Ni-Co: Optimization Results Initial Parameters Initial Optimized Parameters Distance shift z 0= -1. 58

Ni-Co: Optimization Results Initial Parameters Initial Optimized Parameters Distance shift z 0= -1. 58 mm

Optimization Results: Diffusion Coefficient Initial Parameters NIST MOB - Initial Optimized Parameters GE Experimental

Optimization Results: Diffusion Coefficient Initial Parameters NIST MOB - Initial Optimized Parameters GE Experimental data BM analysis Distance shift z 0= -1. 58 mm

Ternary Example: Ni-5. 13 Al-9. 77 Cr/Ni-2. 39 Al-19. 34 Cr (at. %) For

Ternary Example: Ni-5. 13 Al-9. 77 Cr/Ni-2. 39 Al-19. 34 Cr (at. %) For a single couple cannot determine the interdiffusion coefficients using the BM method T = 1100 °C t = 1000 h Reference Binary interactions zeroed

Diffusion Mobility Database Thermodynamic Database Run DICTRA (via python) Compare composition profiles Input Experimental

Diffusion Mobility Database Thermodynamic Database Run DICTRA (via python) Compare composition profiles Input Experimental File (Composition Profiles) 1 couple 2 profiles Calculate Error (via Mathematica) Minimize Error f(Mi) Changing 9 binary interactions Change Mi Run new simulation Diffusion Database Optimization Scheme

Optimization Results: 9 parameters T = 1100 °C t = 1000 h Reference Al.

Optimization Results: 9 parameters T = 1100 °C t = 1000 h Reference Al. Cr=335000 Cr. Al. Cr= 487000 Al. Ni=-166517 Cr. Al. Ni=-118000 Al. Cr. Ni=-53200 Cr. Ni=-68000 T = 1100 °C t = 1000 h Optimized Ni. Al. Cr=211000 Ni. Al. Ni=-23068 Ni. Cr. Ni=-81000 Binary Interactions zero Al. Cr= 341099 Cr. Al. Cr= 397756 Al. Ni= -175812 Cr. Al. Ni=-117332 Al. Cr. Ni= -58013 Cr. Ni=-62614 Ni. Al. Cr=265578 Ni. Al. Ni=-24037 Ni. Cr. Ni=-89378

Goal: Ni/Rene-88 Optimization strategy Ni end-member term • Ti, Nb Ni binary interactions •

Goal: Ni/Rene-88 Optimization strategy Ni end-member term • Ti, Nb Ni binary interactions • Ni-Ti Ni-Nb • Ni-Cr Ni-Al Ni ternary interactions • Ni-Al-Cr • Ni-Al-Ti • Ni-Cr-Nb

Diffusion Mobility Database Thermodynamic Database Run DICTRA (via python) Compare composition profiles Input Experimental

Diffusion Mobility Database Thermodynamic Database Run DICTRA (via python) Compare composition profiles Input Experimental File (Composition Profiles) 1 couple 7 profiles Calculate Error (via Mathematica) Minimize Error f(Mi) Changing 2 binary end members 2 binary interactions Change Mi and z 0, Run new simulation Diffusion Database Optimization Scheme

Ti Profile from Ni/Rene-88 Experiment 4 parameters optimized Initial Ni-MOB = -386325 =-81000 =-367650

Ti Profile from Ni/Rene-88 Experiment 4 parameters optimized Initial Ni-MOB = -386325 =-81000 =-367650 =-68000 Initial Ni-MOB Need to consider additional parameters: • Other binary interactions • Ternary interactions Optimized = -367867 =-93125 =-327697 =-70015 z 0= +7. 5 mm

Summary Ø Multicomponent Ni-base diffusion mobility • Based on optimization of available diffusion coefficient

Summary Ø Multicomponent Ni-base diffusion mobility • Based on optimization of available diffusion coefficient data • Comparison of simulation results with experiments shows good agreement Ø Optimization based on composition profiles Ø Method • Relates profiles to mobility parameters • Provides ability to asses error associated with mobility parameters Ø Examples • Binary: Ni-Co (1 couple, fixed T, 1 profile, 4 parameters, z 0) • Ternary: Ni-Al-Cr (1 couple, fixed T, 2 profiles, 9 parameters) • Multicomponent: Ni/Rene 88 (1 couples, fixed T, 7 profiles, 4 parameters, z 0) Ø Improved optimization strategy needed • Multicomponent single phase (Need to consider more than 1 couple) • Multicomponent multiphase Ø Programming additions needed • Weighting functions • Other error definitions