High Resolution Microwave Spectroscopy of CH Molecule Search

  • Slides: 18
Download presentation
High Resolution Microwave Spectroscopy of CH Molecule Search for Variation of Fundamental Constants Stefan

High Resolution Microwave Spectroscopy of CH Molecule Search for Variation of Fundamental Constants Stefan Truppe

Motivation – Changing Constants? • Do fundamental constants change? Yes: J. K. Webb et

Motivation – Changing Constants? • Do fundamental constants change? Yes: J. K. Webb et al. , PRL 107, 191101 (2011 – There’s even a spatial variation 1 (QSO, metals): Δα/α =(1. 1± 0. 25)⋅10 -6 r Cos ψ – Oklo reactor 2: Δα/α > 4. 5 ⋅ 10 -8 (6σ) (2. 5 Gyr) No: – Methanol 3: Δβ/β=(0. 0± 1. 0)⋅10 -7 (7 Gyr) – OH/H 4: Δα/α > (-1. 7± 1. 4)⋅10 -6 (6. 7 Gyr) clocks 5/Dysprosium 6: – Atomic Δα/α = (-1. 6± 2. 3) 10 -17 per year 1 J. K. Webb et al. , PRL 107, 191101 (2011) 2 S. K. Lamoreaux et al. , PRD 69, 121701(R) (2004) 3 J. Bagdonaite, et al. , Science 339, 46 (2013) 4 N. Kanekar, et al. , Astroph. J. L. , 746: L 16 (2012) 5 T. Rosenband et al. , Science 319, 1808 (2008) 6 N. Leefer et al. , ar. Xiv: 1304. 6940 v 1 (2013)

New system: Λ-doublets of CH

New system: Λ-doublets of CH

New system: Λ-doublets of CH Kozlov, PRA 80, 022118 (2009)

New system: Λ-doublets of CH Kozlov, PRA 80, 022118 (2009)

The Experiment Laser-Microwave Double-Resonance technique

The Experiment Laser-Microwave Double-Resonance technique

The Experiment – Ramsey Spectra

The Experiment – Ramsey Spectra

The Experiment – Systematic Checks • Velocity Dependence He Start at Antinode 3 Ar

The Experiment – Systematic Checks • Velocity Dependence He Start at Antinode 3 Ar Kr Start at Antinode 4

The Experiment – Systematic Checks • Magnetic field: – 2 layer μ-metal shield –

The Experiment – Systematic Checks • Magnetic field: – 2 layer μ-metal shield – 3 axes magnetic field coils – no magnetic field systematics (g-factor ~10 -3) • Electric field – Transitions shifts by 30 Hz/(V/cm)2 – Small field of 70 m. V/cm – Stark shift related systematic of 0. 1 Hz • Microwave power • Density • Second order Doppler shift

The Experiment – J=1/2 Results Transition Resonance Frequency [Hz] (1/2+, 1) – (1/2 -,

The Experiment – J=1/2 Results Transition Resonance Frequency [Hz] (1/2+, 1) – (1/2 -, 1) (1/2+, 0) – (1/2 -, 1) (1/2+, 1) – (1/2 -, 0) (3/2+, 2) – o r to (3/2 -, 2) (3/2+, 1) – (3/2 -, 1) e v o (3/2+, 1) – (3/2 -, 2) pr Im y b d (3/2+, 2) – (3/2 -, 1) c a f a 0 0 3 f

The Experiment – The J=3/2 state • Cold beam: 95% of the molecules in

The Experiment – The J=3/2 state • Cold beam: 95% of the molecules in the ground J=1/2 state populate J=3/2 with resonant mm-waves • Lock the detection laser to the R 22(1/2) line of the A 2Δ(v=0) X 2Π (v=0) transition near 430. 15 nm. • Scan the mm-waves depletion

The Experiment – Measure the Rotational Transition • Doppler shift: -0. 04± 0. 002

The Experiment – Measure the Rotational Transition • Doppler shift: -0. 04± 0. 002 k. Hz/(m/s) • Magnetic fields: +/- 0. 16 k. Hz • Final measurement of the (1/2 -, 1) – (3/2+, 2) rotational transition 53272388. 9 +/- 0. 5 k. Hz stat. +/-0. 16 sys ro p Im b d ve fa a y r o t c o 0 0 2 f

The Experiment – The J=3/2 Λ-doublet • Laser – THz – Microwave – Triple

The Experiment – The J=3/2 Λ-doublet • Laser – THz – Microwave – Triple – Resonance technique • Statistical uncertainty(1 -σ) 5 Hz after 20 min of averaging • Systematic shift with magnetic field!

Systematic Checks • Magnetic field! – Use the molecules as magnetic field probes –

Systematic Checks • Magnetic field! – Use the molecules as magnetic field probes – Total residual field: 0. 3± 0. 1 m. G – Ramsey: ΔF=0 transitions <4 Hz/m. G ΔF=1 transitions <20 Hz/m. G • Doppler shift: 0. 03± 0. 01 Hz/(m/s) • Electric fields, microwave power, density, black-body, probe-laser detuning are negligible 2 x Doppler Shift

Summary 2 Transition Resonance Frequency [Hz] (1/2+, 1) – (1/2 -, 1) t e

Summary 2 Transition Resonance Frequency [Hz] (1/2+, 1) – (1/2 -, 1) t e l ub (1/2+, 0) – (1/2 -, 1) (1/2+, 1) – (1/2 -, 0) (3/2+, 2) – (3/2 -, 2) s t n e 2 / 3 = J e o d Λ th f o (3/2+, 1) – (3/2 -, 1) m e r u as -, 2) (3/2+, 1) – (3/2 e m b la+, 2) – (3/2 -, 1) t (3/2 s Fir (1/2 -, 1) – (3/2+, 2) 532723889000 +/- 600

Constraints On Variations of Fundamental Constants • Compare lab frequencies with radio astronomical data

Constraints On Variations of Fundamental Constants • Compare lab frequencies with radio astronomical data • Compare CH with OH to cancel red-shift • Compare the two Λ-doublets of CH to -7 Δα/α=(0. 6± 1. 1)⋅10 cancel red-shift Δμ/μ=(-1. 3± 2. 2)⋅10 -7 submitted for publication

Outlook • Dedicated astronomical measurements even higher precision and sources at high redshift •

Outlook • Dedicated astronomical measurements even higher precision and sources at high redshift • Telescopes: – 100 m dish at Effelsberg (MPG) – 100 m Green Bank Telescope (NRAO) – VLA (NRAO) – 300 m Telescope at Arecibo – New 500 m Telescope in Guizhou China – Square Kilometer Array in South Africa and Australia – Measurement of the rotational transitions using ALMA Δα/α or Δμ/μ ~ 10 -8 is possible

Conclusion • Measured the J=1/2, Λ-doublet frequencies to 1 ppb. (300 -fold improvement) •

Conclusion • Measured the J=1/2, Λ-doublet frequencies to 1 ppb. (300 -fold improvement) • First laboratory measurement of the J=3/2, Λ-doublet frequencies to a fractional uncertainty of 10 ppb • Reduced the uncertainty in the J=1/2 -J=3/2 rotational transition by a factor of 200. • Comparison of J=1/2 and J=3/2 doublets is a robust technique to constrain variations of fundamental constants • Comparison of our lab data to radio astronomy data gives Δα/α=(0. 6± 1. 1)⋅10 -7 Δμ/μ=(-1. 3± 2. 2)⋅10 -7

Thanks Mike Tarbutt Misha Kozlov Rich Hendricks & Sean Tokunaga Heather Lewandowski Ed Hinds

Thanks Mike Tarbutt Misha Kozlov Rich Hendricks & Sean Tokunaga Heather Lewandowski Ed Hinds