High moisture extrusion optimisation of texturisation through control

  • Slides: 29
Download presentation
High moisture extrusion : optimisation of texturisation through control of rheological and textural parameters

High moisture extrusion : optimisation of texturisation through control of rheological and textural parameters D. Bounie, E. Van Hecke USTL (Université des Sciences et Technologies de Lille) IAAL (Institut Agricole et Alimentaire) Bâtiment C 6 59655 Villeneuve d’Ascq Cedex - France Tel : +33 (0)3 20. 43. 49. 21, Fax : +33 (0)3 20. 43. 44. 86 E-Mail : Bounie@univ-lille 1. fr, vanhecke@univ-lille 1. fr Smart Extrusion Workshop, Sydney, 2 december 1997 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 1)

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats <8 %, q > 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line • specific feeding device • special screw profiles (+ break plates) • long cooling-dies • temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps • protein melting (plasticising) : within the extruder • material texturization (fibration) : along the die 3 Flow in extruder and die during texturization 3 Control of texturization through control of rheological behaviour • (shear) viscosity • elasticity • visoelasticity • elongational viscosity 3 Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 2)

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats <8 %, q > 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line • specific feeding device • special screw profiles (+ break plates) • long cooling-dies • temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps • protein melting (plasticising) : within the extruder • material texturization (fibration) : along the die 3 Flow in extruder and die during texturization 3 Control of texturization through control of rheological behaviour • (shear) viscosity • elasticity • visoelasticity • elongational viscosity 3 Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97

HIGH MOISTURE EXTRUSION : APPLICATIONS Wet extrusion vs. dry extrusion (Roussel, 1996) Moisture content

HIGH MOISTURE EXTRUSION : APPLICATIONS Wet extrusion vs. dry extrusion (Roussel, 1996) Moisture content % 80 % Fruits and vegetables Cheese analogs Enzyme reactors 60 % 40 % 20 % 0% TVP Petfood-moist Pasta Dry petfoods Breakfast cereals Snacks - Flat breads Confectionery Wet extrusion : usual raw materials (Roussel, 1996) Animal raw materials 3 red and white meat minces 3 meat trimmings 3 fish meats (surimi) 3 filleting co-products 3 minced from shell fish or cephalopoda 3 egg or milk proteins Vegetable raw materials 3 protein-rich meals 3 protein concentrates or isolates (soya, wheat, peas, brans, . . . ) after adequate rehydratation APPLICATIONS (Cheftel and al. , 1992) Sterilization 3 preparation of sterile vegetables purées, meat-vegetables mixes Chemical reaction (enzymic or acid hydrolysis) 3 starch or proteins modification for preparation of glucose syrups, fermentation substrates, flavor preparations Texturization Gelation/fibration 3 gelation and fiber formation using vegetable proteins (soya, gluten) 3 restructuration of mince, surimi, mechnically deboned meats (with binders) 3 texturization and fiber formation with fish muscle proteins Emulsification/gelation : « microcoagulation » of dairy proteins 3 processed cheeses 3 cheese analogs 3 fat substitutes 3 casein coagulation iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 3 a)

MACRO AND MICRO STRUCTURES OF FIBROUS EXTRUDED PRODUCTS A commercial extruded crab analog from

MACRO AND MICRO STRUCTURES OF FIBROUS EXTRUDED PRODUCTS A commercial extruded crab analog from Nippon Suisan (Cheftel and al, 1992) Scanning electron micrographs of an extruded surimi/soya concentrate mix (Thiebaud, 1995) iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 3 b)

TYPICAL EXTRUSION LINE FOR PRODUCT FIBRATION Feeding device Twin screw extruder with accurate temperature

TYPICAL EXTRUSION LINE FOR PRODUCT FIBRATION Feeding device Twin screw extruder with accurate temperature control Gear pump Extra long cooling die (Nippon Suisan patent) iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 3 c)

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats <8 %, q > 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line • specific feeding device • special screw profiles (+ break plates) • long cooling-dies • temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps • protein melting (plasticising) : within the extruder • material texturization (fibration) : along the die 3 Flow in extruder and die during texturization 3 Control of texturization through control of rheological behaviour • (shear) viscosity • elasticity • visoelasticity • elongational viscosity 3 Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97

TEXTURIZATION : MELTING + FIBRATION Flow in extruder and cooled die Metering zone Biopolymer

TEXTURIZATION : MELTING + FIBRATION Flow in extruder and cooled die Metering zone Biopolymer phases separate into different domains in extruder Transition zone Domains orientate as a result of flow through die Die Products sets to fibrous structure on cooling Structure formation as a result of phase separation in biopolymer mixtures followed by subsequent orientation in flow through die (Tolstoguzov, 1986 ; Mitchell et al. , 1994) iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 4)

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats <8 %, q > 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line • specific feeding device • special screw profiles (+ break plates) • long cooling-dies • temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps • protein melting (plasticising) : within the extruder • material texturization (fibration) : along the die 3 Flow in extruder and die during texturization 3 Control of texturization through control of rheological behaviour • (shear) viscosity • elasticity • visoelasticity • elongational viscosity 3 Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97

COOLING DIES FOR TEXTURATION Rectangular die Circular die Annular die iaal D. Bounie, E.

COOLING DIES FOR TEXTURATION Rectangular die Circular die Annular die iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 5)

FLOW PATTERN IN EXTRUDER AND DIE (Bhattacharya and Padmanabhan, 1992) Intermediary region (relaxation) Metering

FLOW PATTERN IN EXTRUDER AND DIE (Bhattacharya and Padmanabhan, 1992) Intermediary region (relaxation) Metering zone Shear flow P Entrance region Extensional flow Viscometric flow region Exit region Shear flow DPentry DPshear flow DPexit die axis DPtotal = DPentry + Dpshear flow + DPexit iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 6)

FLOW PROFILES THROUGH DIES Effect of cooling Flow through insulated die Flow through supercooled

FLOW PROFILES THROUGH DIES Effect of cooling Flow through insulated die Flow through supercooled die Liquid iaal Liquid / solid Solid D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 7)

EFFECT OF OPERATING CONDITIONS ON FLOW, TROUBLESHOOTING Effect of implementing a non-newtonian fluid Effect

EFFECT OF OPERATING CONDITIONS ON FLOW, TROUBLESHOOTING Effect of implementing a non-newtonian fluid Effect of viscosity y cosit vis se of ea Incr m=1 m<1 m << 1 Decr e. inc ase of v i reas e of scosity : cont w e ater. inc nt reas e of temp erat ure Troubleshooting «Shark-skin» : periodic rupture of fluid bed (no slip at die wall) «Two-phases wavy flow» : insufficient cooling rate (die too short or too thick) ; inner layers of flow are still melted at die outlet iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 8)

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats <8 %, q > 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line • specific feeding device • special screw profiles (+ break plates) • long cooling-dies • temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps • protein melting (plasticising) : within the extruder • material texturization (fibration) : along the die 3 Flow in extruder and die during texturization 3 Control of texturization through control of rheological behaviour • (shear) viscosity • elasticity • visoelasticity • elongational viscosity 3 Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97

STRESS TENSOR s 2, 2 s 2, 1 s 2, 3 s 1, 2

STRESS TENSOR s 2, 2 s 2, 1 s 2, 3 s 1, 2 s 3, 2 2 s 3, 3 s 1, 1 s 3, 1 s 1, 3 1 3 Shear stress (if no rotation, i. e. no torque) s 3, 1 = s 1, 3 s 3, 2 = s 2, 3 s 2, 1 = s 1, 2 N 1 = s 1, 1 - s 2, 2 (first normal stress difference). = he e = k g 2 (e : elongational strain rate) N 2 = s 2, 2 - s 3, 3 (second normal stress difference) N 2 < 0, N 2 << N 1 Normal stress s 1, 1 s 2, 2 s 3, 3 iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 9)

s. T SHEAR VISCOSITY x dl F S v s. T = v= .

s. T SHEAR VISCOSITY x dl F S v s. T = v= . g= hs = F S dl dt dv dx s. T . g dx Bingham plastic shear stress (N. m-2 = Pa) hs shear velocity (m. s-1) shear rate (s-1) shear viscosity (Pa. s) s T, o Yield stress Newtonian Dilatent (shear thickening) Pseudoplastic (shear thinning) . g iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 10)

VISCOSITY : LAWS OF BEHAVIOUR Newtonian h = constant Non Newtonian . h =

VISCOSITY : LAWS OF BEHAVIOUR Newtonian h = constant Non Newtonian . h = K g m-1 Effect of temperature T (Harper and al. , 1971) . h » (K g m-1) . h » (K g Effect of moisture content MC (Harper and al. , 1971) h» (K : index of consistency, m : flow behaviour index Effect of thermomechanical history W (SME) (Della Valle and Vergnes, 1994) e -a T . (K g Power law (Ostwald’s law) m-1 ) e -e W Effect of chemical reaction (DE, R) (Remsen and Clark, 1978) -b MC h» . (K g m-1)e - k e -DE RTa(t) dt Example : corn starch at low MC (Della Valle and Vergnes, 1994) h = Ko e ( DE - a MC - b W) RTa . m’-1 g with : m’ = c 1 T + c 2 MC + c 3 MC. T iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 11)

IN-LINE MEASUREMENT OF VISCOSITY Qv DL P (Mac Master and al. , 1987) DP

IN-LINE MEASUREMENT OF VISCOSITY Qv DL P (Mac Master and al. , 1987) DP L Shear stress at wall sw R W h R DP 2 DL h DP 2 DL Log sw Real shear rate at wall. gw, r Viscosity h 4 Qv 3 m + 1 p R 3 4 m sw. gw, r 6 Qv 2 m + 1 W h 2 3 m sw. gw, r p R 3 6 Qv 1 1+ Apparent shear rate at wall. gw, a h W W h 2 for different Qv m Log K. Log gw, a iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 12)

IN-LINE RHEOMETERS WITH CONTROLLED FEEDRATE By pass or side stream rheometers (Goettfoert system for

IN-LINE RHEOMETERS WITH CONTROLLED FEEDRATE By pass or side stream rheometers (Goettfoert system for plastics) Gear pump « Rheopac » slit die rheometer (Vergnes et al. , 1990 and 1993) Piston keys Rheometer Derivation iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 13)

DISPLAY OF ELASTICITY : Weissenberg effect, Barus effect s. N Weissenberg effect increase with.

DISPLAY OF ELASTICITY : Weissenberg effect, Barus effect s. N Weissenberg effect increase with. increasing g s. T Barus effect : swelling at die outlet fdie fextrudate s. T iaal (s. N) s. N D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 14)

IN-LINE MEASUREMENT OF ELASTICITY : EXIT PRESSURE METHOD (Padmanabhan and Bhattacharya, 1991) related to

IN-LINE MEASUREMENT OF ELASTICITY : EXIT PRESSURE METHOD (Padmanabhan and Bhattacharya, 1991) related to extensional viscosity P DPentrance proportional to elasticity DPexit L iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 15)

IN-LINE MEASUREMENT OF ELASTICITY HOLE PRESSURE METHOD ( Baird, 1976 ; Padmanabhan and Bhattacharya,

IN-LINE MEASUREMENT OF ELASTICITY HOLE PRESSURE METHOD ( Baird, 1976 ; Padmanabhan and Bhattacharya, 1992 ; Bhattacharya M. and Padmanabhan M. , 1992, Malkus and al. , 1992 ; Bouvier and Gelus, 1994) s. N flush-mounted transducers P 1 P 2 P 3 Qv P 4 transducer at the bottom of the hole P P 1 P 2 P 3 P 4 DP 1, 3 (shear viscosity) Dphole (elasticity) L N 1 = s 1, 1 - s 2, 2 = he e iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 16)

DYNAMIC DETERMINATION OF VISCOELASTICITY (1) (Ross-Murphy, 1988) Accelerometer Force transducer Imposed oscillatory strain g

DYNAMIC DETERMINATION OF VISCOELASTICITY (1) (Ross-Murphy, 1988) Accelerometer Force transducer Imposed oscillatory strain g = f(t) Measured stress s = f(t) Viscous fluid Strain g Elastic fluid Stress s Strain g t t d= p d=0 2 g(t) = g 0 cos (wt) s(t) = s 0 cos (wt + d) Viscoelastic fluid Strain g Stress s t 0<d< iaal p 2 D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 17)

DYNAMIC DETERMINATION OF VISCOELASTICITY (2) Ideal viscous liquid Viscoelastic fluid Ideal elastic solid Newton’s

DYNAMIC DETERMINATION OF VISCOELASTICITY (2) Ideal viscous liquid Viscoelastic fluid Ideal elastic solid Newton’s law Hooke’s law . s. T = h g s. N = E g Viscosity Viscoelasticity Elasticity Storage modulus Loss modulus G’’ = s 0 g 0 G’’ = tg d G’ sin d G’ = s 0 g 0 cos d log scale G’ G’’ or tg d Temperature Transition iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 18)

ELONGATIONAL VISCOSITY he Type of extensional flow hs Newtonian fluid (Trouton modulus) Non-newtonian fluid

ELONGATIONAL VISCOSITY he Type of extensional flow hs Newtonian fluid (Trouton modulus) Non-newtonian fluid Uniaxial extension 3 >> 3 4 >> 4 6 >> 6 ex : spinning of fibers Planar extension ex : foil stretching, central disk injection Biaxial extension ex : blowing extrusion, plug extrusion iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 19)

ELONGATIONAL vs. SHEAR VISCOSITY h Newtonian fluid h Non-newtonian fluid he he hs hs

ELONGATIONAL vs. SHEAR VISCOSITY h Newtonian fluid h Non-newtonian fluid he he hs hs . . g g he hs he = constante hs ¹ constante. [= f(g)] + In-line determination of extensional viscosity : Entrance pressure drop method (White and al. , 1987 ; Bhattacharya and al. , 1994) iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 20)

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15

PLAN High moisture extrusion 3 Usual extrusion conditions (50 - 80 % water, 15 - 30 % proteins, fats <8 %, q > 130 °C) and consequences (reduction of : shear, viscous dissipation of energy and expansion at die outlet, especially with long cooling dies) 3 Raw materials 3 Main applications 3 Typical extrusion line • specific feeding device • special screw profiles (+ break plates) • long cooling-dies • temperature control Fundamentals of high moisture texturization during extrusion-cooking 3 Main steps • protein melting (plasticising) : within the extruder • material texturization (fibration) : along the die 3 Flow in extruder and die during texturization 3 Control of texturization through control of rheological behaviour • (shear) viscosity • elasticity • visoelasticity • elongational viscosity 3 Correlation between on-line and off-line assessment of rheological and textural parameters Perspectives iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97

PERSPECTIVES : NEW DIES ? Breaker plates iaal D. Bounie, E. Van Hecke :

PERSPECTIVES : NEW DIES ? Breaker plates iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 21)

BIBLIOGRAPHY • Baird D. G. , 1976. Fluid elasticity measurements from hole pressure error

BIBLIOGRAPHY • Baird D. G. , 1976. Fluid elasticity measurements from hole pressure error data. J. Appl. Polym. Sci, 20, pp 31553173. • Bhattacharya M. and Padmanabhan M. , 1992. Extrusion processing : texture and rheology. In : Encyclopedia of Food and Science Technology, Hui Y. H. Ed. , Willey Interscience, New York, pp 800 -814. • Bhattacharya M. , Padmanabhan M. and Seethamraju K. , 1994. Uniaxial extensional viscosity during extrusion cooking from entrance pressure drop method. J. Food Sci. , 59(1), pp 221 -226, 230 • Bouvier J. M. and Gelus M. , 1994. Apport des mesures en ligne à l’analyse du procédé de cuisson-extrusion. In : La Cuisson-Extrusion, Colonna P. and Della Valle G. Eds. , Tec & Doc Lavoisier, Paris, pp 323 -355. • Cheftel J. C. , Kitagawa M. and Quéguiner C. , 1992. New protein texturization processes by extrusion cooking at high moisture levels. Food Rev. Int. , 8(2), pp 235 -275. • Cheftel J. C. , Kitagawa M. and Quéguiner C. , 1994. Nouveaux procédés de texturation protéique par cuissonextrusion à teneur élevée en eau. In : La Cuisson-Extrusion, Colonna P. and Della Valle G. Eds. , Tec & Doc Lavoisier, Paris, pp 45 -84. • Cheftel J. C. and Dumay E. , 1993. Microcoagulation of proteins for development of "creaminess". Food Rev. Int. , 9(4), pp 473 -502. • Della Valle G. and Vergnes B. , 1994. Propriétés thermophysiques et rhéologiques des substrats utilisés en cuisson-extrusion. In : La Cuisson-Extrusion, Colonna P. and Della Valle G. Eds. , Tec & Doc Lavoisier, Paris, pp 439 -467. • Harper J. M. , Rhodes T. P. and Wanninger L. A. , 1971. Viscosity model for cooked cereal doughs. A. I. Ch. E. Symposium Series, 676(108), pp 40 -43. • Malkus D. S. , Pritchard W. G. and Yao M. , 1992. The hole-pressure effect and viscosimetry. Rheol. Acta, 31, pp 521 -534. • Mc Master T. J. , Senouci A. and Smith A. C. , 1987. Measurements of rheological and ultrasonic properties of food and synthetic polymer melts. Rheol. Acta, 26, pp 308 -315. • Mitchell J. R. , Areas J. A. G. and Rasul S. , 1994. Modifications chimiques et texturation des protéines à faible teneur en eau. . In : La Cuisson-Extrusion, Colonna P. and Della Valle G. Eds. , Tec & Doc Lavoisier, Paris, pp 85104. • Padmanabhan M. and Bhattacharya M. , 1991. Flow behavior and exit pressures of corn meal under highshear-high-temperature extrusion conditions using a slit die. J. Rheol. , 35(3), pp 315 -343. • Padmanabhan M. and Bhattacharya M. , 1992. Rheological measurement of fluid elasticity during extrusioncooking. Trends in Food Science and Technology, 6, 149 -151. • Quéguiner C. , Dumay E. , Cavalier-Salou and Cheftel J. C. , 1991. Application of extrusion cooking to dairy products : preparation of fat analogues by microcoagulation of whey proteins. In : Applied Food Extrusion Science, Kokini J. and al. Eds. , Dekker, New York, pp 363 -376. • Quéguiner C. , Dumay E. , Cavalier-Salou and Cheftel J. C. , 1992. Microcoagulation of a whey protein isolate by extrusion cooking at acid p. H. J. Food Sci. , 57, pp 610 -616. • Remsen C. H. and Clark J. P. , 1978. A viscosity model for a cooking dough. J. Food Process Eng. , 2, pp 39 -64. • Ross-Murphy S. B. , 1988. Small deformation measurements. In : Food Structure : its Creation and Evaluation, Blanshard J. M. and Mitchell Eds. , Butterworth, London, pp 387 -400. • Roussel L. , 1996. Making meat products using extrusion technology. Extrusion Communiqué, nov-dec, pp 16 -18. • Thiebaud M. , 1995. Texturation par cuisson-extrusion de mélanges protéiques hydratés à base de surimi de poisson. Influence des paramètres opératoires et de la formulation sur les caractéristiques biochimiques et physicochimiques des extrudats. Ph. D. Thesis, University of Montpellier. • Tolstoguzov V. B. , 1986. Functional properties of protein-polysaccharides mixtures. In : Functional Properties of Food Macromolecules, Mitchell J. R. and Ledward D. A. Eds. , Elesevier Applied Science Pub. , London, pp 385415. • Vergnes B. , Della Valle G. and Tayeb J. , 1990. Rheopac : a new on-line rheometer with controlled feed rate to determine the viscosity of starchy products. In : Proceedings of ACo. Fo. P 2, 13 -14 nov. 1990, Bimbenet J. J. and Trystram G. Eds. , Paris. • Vergnes B. , Della Valle G. and Tayeb J. , 1993. Rheopac : a specificin-line rheometer for extruded starchy products. Design, validation and application to maize starch. Rheol. Acta, 32, pp 465 -476. • White S. A, Gotsis A. D. and Baird D. G. , 1987. Review of the entry flow problem : experimental and numerical. J. Non-Newtonian Fluid Mech. , 24, pp 121 -160. iaal D. Bounie, E. Van Hecke : High moisture extrusion - Sydney, dec. 2 nd 97 (p 22)