HIDROLOGI DAERAH ALIRAN SUNGAI PENGERTIAN n n HIDROLOGI

  • Slides: 112
Download presentation
HIDROLOGI DAERAH ALIRAN SUNGAI

HIDROLOGI DAERAH ALIRAN SUNGAI

PENGERTIAN n n HIDROLOGI DAERAH ALIRAN SUNGAI CABANG HIDROLOGI YANG BERHUBUNGAN DENGAN PENGINTEGRASIAN PROSES

PENGERTIAN n n HIDROLOGI DAERAH ALIRAN SUNGAI CABANG HIDROLOGI YANG BERHUBUNGAN DENGAN PENGINTEGRASIAN PROSES HIDROLOGIS DI DAS DLM KAITANYA DG SIFAT RESPONSIF SUATU DAS PROSES HIDROLOGIS DAN KETIDAKSERAGAMAN SPASIALNYA DIPERLIHATKAN OLEH IKLIM, TOPOGRAFI, GEOLOGI, LAHAN, TUMBUHAN, DAN PENGGUNAAN LAHAN

Hydrology: the distribution and movement of water.

Hydrology: the distribution and movement of water.

Perkiraan Jumlah Air di Bumi No 1. 2. 3. 4. 5. 6. 7. 8.

Perkiraan Jumlah Air di Bumi No 1. 2. 3. 4. 5. 6. 7. 8. Lokasi Danau air tawar Sungai Lengas tanah Airtanah Danau air asin dan inland sea Atmosfir Kutub dan salju Laut dan lautan Jumlah Volume (ribuan m 3) Persen 125 1, 25 65 8250 105 13 29200 1320000 0, 008 0, 001 1357759, 25 100 2, 100 97, 25

Pettersen, S. , 1958, Introduction to Meteorology, Mc. Graw-Hill Book Company Inc, New York.

Pettersen, S. , 1958, Introduction to Meteorology, Mc. Graw-Hill Book Company Inc, New York. Bayong Tjasjono, 1995, Klimatologi Umum, ITB Press, Bandung. Prawirowardoyo, S. , 1996, Meteorologi, ITB Press, Bndung. Alber Miller, Jack C. Thompson, Richard E. Peterson, Donal R. Haragan. , 1983, Elements of Meteorology, Fourth Edition, Charles E Merril Publishing Company, Columbus. Lakitan, B. , 1997, Dasar-Dasar Klimatologi, PT Raja Grafindo Persada, Jakarta. Linacre, E. , 1992, Climate Data and Resources : A Refference and Guide, Routledge, London. Russel D. T. , and Perry, A. , 1997, Applied Climatology : Principles and Practise, London.

Tipe-tipe, keragaman, pengukuran & perhitungan Presipitasi ØKelembaban Udara ØTemperatur ØAngin & Radiasi Ø

Tipe-tipe, keragaman, pengukuran & perhitungan Presipitasi ØKelembaban Udara ØTemperatur ØAngin & Radiasi Ø

OROGRAFIS Level of condensation

OROGRAFIS Level of condensation

Convergence Condensation level High pressure Low pressure High pressure

Convergence Condensation level High pressure Low pressure High pressure

Convective Early morning Mid-day Late afternoon

Convective Early morning Mid-day Late afternoon

Keragaman Presipitasi 1. 2. 3. 4. 5. 6. Garis Lintang Ketinggian tempat Jarak dari

Keragaman Presipitasi 1. 2. 3. 4. 5. 6. Garis Lintang Ketinggian tempat Jarak dari sumber-sumber air Posisi di dalam dan ukuran massa tanah benua atau daratan Hubungannya dengan deretan gunung Suhu nisbi tanah dan samudera yang berbatasan

CIRI HUJAN YANG PENTING DALAM HIDROLOGI n n Intensitas : jumlah hujan yg jatuh

CIRI HUJAN YANG PENTING DALAM HIDROLOGI n n Intensitas : jumlah hujan yg jatuh pada waktu tertentu (mm/menit, mm/jam) Lama hujan : periode jatuhnya hujan (menit, jam, hari) Frekuensi : mengacu pada kejadian hujan tertentu akan jatuh pada saat tertentu Luas wilayah : luas wilayah, dimana hujannya dianggap sama

THIESSEN POLYGON METHOD

THIESSEN POLYGON METHOD

ISOHYETAL METHOD

ISOHYETAL METHOD

Diameter lobang (inci): n n Kanada (3) Inggris (5) Amerika (8 atau 12) Menurut

Diameter lobang (inci): n n Kanada (3) Inggris (5) Amerika (8 atau 12) Menurut WMO yang umum antara 2 hingga 5 dm Ketinggian (cm) n n Beragam mulai dari 40 sampai lebih Belanda menggunakan, 4 dm 2 pada 40 cm KNMI luas 2 dm 2 pada 40 cm Acuan International WMO, 128 cm 2 pada 1 m di atas tanah

Wind speed and direction Rain-gauge

Wind speed and direction Rain-gauge

Suhu udara

Suhu udara

Global winds Wind is the movement of air from regions of high pressure to

Global winds Wind is the movement of air from regions of high pressure to regions of low pressure

Daftar Referensi/Pustaka n n n Nagle G, and K. Spencer. 1997. Advanced Geography. Oxford

Daftar Referensi/Pustaka n n n Nagle G, and K. Spencer. 1997. Advanced Geography. Oxford University Press, New York. Horst L. 1974. Hydrometry. International Course in Hydraulics and Environment Engineering, Delft The Netherlands. Seyhan E. 1977. Fundamental Hydrology. Institut der Rijkuniversiteit Utrecht, Netherland. Seyhan E. 1977. Watershed as a Hydrological Unit Geografisch Institut der Rijkuniversiteit Utrecht, Netherland. Wilson E. M. 1975. Engineering Hydrology. The Macmillan Press, New York.

Aliran Permukaan n n Terminologi Aliran Permukaan dan Faktor-Faktor yang mempengaruhi Pengertian Daerah Aliran

Aliran Permukaan n n Terminologi Aliran Permukaan dan Faktor-Faktor yang mempengaruhi Pengertian Daerah Aliran Sungai (DAS) sebagai kesatuan wilayah kajian termasuk Morfometrinya Metoda Pengukuran aliran (Debit) dan pembuatan “Rating Curve” Analisis Hidrograf Aliran Perhitungan Volume Aliran permukaan dengan pendekatan Neraca Air

PENGERTIAN SISTEM MASUKKAN Hujan Aliran Air Sedimen Polutan STRUKTUR SISTEM DAS Reservoir Segmen Sungai

PENGERTIAN SISTEM MASUKKAN Hujan Aliran Air Sedimen Polutan STRUKTUR SISTEM DAS Reservoir Segmen Sungai KELUARAN Debit Sungai Kualitas Air Sedimen Polutan Pendekatan: Black Box / Grey Box / White Box

LIMPASAN n n n SURFACE RETENTION: Interception, Depression Storage, and Evaporation during rain SURFACE

LIMPASAN n n n SURFACE RETENTION: Interception, Depression Storage, and Evaporation during rain SURFACE DETENTION, yaitu air yang tertahan beberapa saat sebagai “sheet” pada permukaan tanah sebelum terjadinya “overland flow” Macam-macam Limpasan: “Surface Flow”, Subsurface Flow, Groundwater Flow, dan “ Channel Presipitation”

LIMPASAN n n n Intensitas ch atau lelehan salju melebihi laju infiltrasi, maka kelebihan

LIMPASAN n n n Intensitas ch atau lelehan salju melebihi laju infiltrasi, maka kelebihan air mulai berakumulasi cadangan permukaan Jika kapasitas cadangan perm dilampaui sbg fungsi depressi perm dan gaya tegangan muka limp perm mulai sbg aliran lapisan yg tipis LIMPASAN bag presipitasi/kontribusi perm dan bawah perm yg terdiri atas gerakan gravitasi air, nampak pd saluran perm dr bentuk permanan/terputus-putus (aliran sungai, debit sungai, produksi tangkapan)

Limpasan n n Aliran murni limpasan yg tdk dipengaruhi oleh pengaliran buatan, simpanan atau

Limpasan n n Aliran murni limpasan yg tdk dipengaruhi oleh pengaliran buatan, simpanan atau tindakan manusia lainnya pada atau diatas salurun maupun pd DAS Limpasan perm bag limp yg melintas diatas perm tanah menuju saluran sungai Limpasan bawah permukaan sebag limpasan perm krn bag presipitasi yg berinfiltrasi ketanah perm, bergerak secara lateral mel horison tnh atas menuju sungai Limpasan perm langsung bag limp perm yg msk sungai langsung setelh ch/lelehan salju

- Limpasan ini = kehilangan presipitasi ( = intersepsi + infiltrasi + evapotraspirasi +

- Limpasan ini = kehilangan presipitasi ( = intersepsi + infiltrasi + evapotraspirasi + cadangan permukaan) - limpasan perm langsung = hujan efektif, jika hanya hujan yg terlibat dlm membentuk limpasan permukaan - kelebihan presipitasi = konstribusi presipitasi thd limpasan permukaan

LIMPASAN n n n n n Fiscositas cairan Derajat kekasaran permukaan tanah Faktor 2

LIMPASAN n n n n n Fiscositas cairan Derajat kekasaran permukaan tanah Faktor 2 yg mempengaruhi vol total limpasan Iklim banyaknya presipitasi dan ETP DAS ukuran DAS, tinggi tempat rata 2 DAS Faktor 2 penyebaran waktu limpasan Meteorologis presipitasi, suhu DAS top, geologi, jenis tnh, veg, pola drainas Aktivitas manusia

Karakteristik sungai/komponen sungai n n Surface run off bag hujan yg bergerak di atas

Karakteristik sungai/komponen sungai n n Surface run off bag hujan yg bergerak di atas perm tnh krn gravitasi dr air yg bergerak sendiri Stream flow sro yang kecil-kecil berkumpul jika besar = sungai Base flow bag dari aliran sungai yg berasal dr air tnh sifatnya permanen Hujan yg langsung masuk sungai

KONSEPSI DAS n n n River Basin or Drainage Basin is the entire area

KONSEPSI DAS n n n River Basin or Drainage Basin is the entire area drained by a stream or system of connecting streams such that all stream-flow originating in the area is discharged through a single outlet (Linsley, 1949, Applied Hydrology) Sistem sungai dalam suatu cekungan/ledok atau sistem pengatusan air dlm suatu cekungan atau ledokan Watershed area supplies surface runoff to a river or stream, whereas drainage basin for a given stream is the tract of land drained of both surface runoff and groundwater discharge (Knapp, 1989, Introduction to Hydrology) suatu sistem hidrologi Catchment area (related to precipitation) suatu daerah tangkapan air Daerah Aliran Sungai (DAS) adalah suatu wilayah ekosistem yang dibatasi oleh pemisah air topografi dan berfungsi sebagai pengumpul, penyimpan dan penyalur air, sedimen, unsur hara dalam suatu sistem sungai, yang kesemuanya keluar melalui “outlet “ tunggal. Satuan Wilayah Sungai satuan wilayah pengelolaan beberapa DAS yg dikelompokan atas dasar kemudahan dalam pengelolaanya

Watershed An area contributing runoff and sediment.

Watershed An area contributing runoff and sediment.

UNIT PENGELOLAAN DAS n n n DAS DAS kesatuan bentang lahan sistem hidrologi ekosistem

UNIT PENGELOLAAN DAS n n n DAS DAS kesatuan bentang lahan sistem hidrologi ekosistem FUNGSI DAS 1. Fungsi keruangan, produksi, habitat 2. Fungsi hidrologi yg mengatur siklus hidrologi 3. Fungsi ekosistem keterpaduan sistem yg terbentuk oleh berbagai komponen lingkungan hidup n

Faktor yg berpengaruh thd DAS 1. Topografi (bentuk, kemiringan 2. 3. 4. 5. basin/sungai)

Faktor yg berpengaruh thd DAS 1. Topografi (bentuk, kemiringan 2. 3. 4. 5. basin/sungai) Iklim ( Sumber/input : Presipitasi ) Geologi ( Tipe Batuan: pasiran – lempung) Tanah ( Infiltrasi, Kelengasan) Vegetasi ( Intersepsi, Evapotranspirasi )

BASIN MORPHOMETRY Dealing with the measurement of River Basin or Watershed geometry; n Basin

BASIN MORPHOMETRY Dealing with the measurement of River Basin or Watershed geometry; n Basin Morphometry is useful in development of the empirical methods for the rainfall-runoff relations. n

n n Aspek Keruangan: Luas (A) dan Bentuk (Rf, Rc, Re) Aspek Topografi: Kemiringan

n n Aspek Keruangan: Luas (A) dan Bentuk (Rf, Rc, Re) Aspek Topografi: Kemiringan DAS (Sb), Kemiringan Sungai Utama (Ss), Median Elevasi Apek Panjang Alur: Sungai Terpanjang (Li), Panjang Sungai Utama ke Pusat DAS (Lg), Panjang Sungai Utama (Ls), Panjang “Overland Flow” Aspek Alur Sungai: Orde Sungai, Tingkat Percabangan Sungai (Rb), Kerapatan Alur Sungai (Dd), Titik Pusat DAS (Cg), Sudut Percabangan Sungai

Aspek Keruangan Luas Daerah Aliran Sungai (DAS) n Bentuk DAS dapat dibedakan menjadi: 1.

Aspek Keruangan Luas Daerah Aliran Sungai (DAS) n Bentuk DAS dapat dibedakan menjadi: 1. Faktor Bentuk (Form Factor = Rf) 2. Circularity Ratio = Rc 3. Elongation Ratio = Re n

LUAS DAS n n n GARIS BATAS ANTARA DAS PUNGGUNG PERMUKAAN BUMI YG DAPAT

LUAS DAS n n n GARIS BATAS ANTARA DAS PUNGGUNG PERMUKAAN BUMI YG DAPAT MEMISAHKAN DAN MEMBAGI AIR HUJAN KE MASING 2 DAS Luasan yg dibatasi oleh pemisah topografi yg merupakan batas pemisah aliran GRS BATAS TSB DITENTUKAN BERDASARKAN PERUBAHAN KONTUR DARI PETA TOPOGRAFI LUAS DAS

LUAS DAS n n salah satu faktor penting dalam memperkirakan volume aliran Faktor dlm

LUAS DAS n n salah satu faktor penting dalam memperkirakan volume aliran Faktor dlm pembentukan hidrrograf aliran krn luas DAS menent daya tampung DAS thd masukan air hujan makin luas DAS, makin besar daya tampung berarti makin besar vol air yg dpt disimpan disumbangkan oleh DAS shg bentuk hidrograf akan berbeda untuk luas DAS yg berbeda Bentuk hidrograf dipengaruhi oleh jlh vol air yg mengalir dan tersimpan dlm suatu DAS

- Panjang DAS sama dengan jarak datar dari muara sungai sampai ke arah hulu

- Panjang DAS sama dengan jarak datar dari muara sungai sampai ke arah hulu sepanjang sungai induk Lg=1/2 Dd=A/2 Lb Lg = panjang aliran permukaan (km) Dd = kerapatan aliran (km/km 2) Lb = panjang sungai induk (km) -Lebar DAS dihitung berdasarkan luas DAS di bagi dengan panjangnya W = A/Lb A = luas DAS, W=lebar maks DAS (km), Lb=panj. sg induk

BENTUK DAS n n Memanjang biasanya induk sungai memanjang dengan anak 2 sungai langsung

BENTUK DAS n n Memanjang biasanya induk sungai memanjang dengan anak 2 sungai langsung masuk ke sungai induk atau jalur daerah di kiri kanan sungai utama dimana anak 2 sungai mengalir ke sungai utama Kadang 2 berbentuk seperti bulu burung Mempunyai debit banjir kecil waktu tiba banjir dari anak 2 sungai berbeda-beda Sebaliknya banjirnya berlangsung agak lama

Radial n n Bentuk DAS radial terjadi krn arah alur sungai seolah-olah memusat pada

Radial n n Bentuk DAS radial terjadi krn arah alur sungai seolah-olah memusat pada satu ttk shg menggambarkan bentuk radial kadang 2 berbentuk kipas/lingkaran, anak 2 sungainya mengkonsentrasi ke suatu ttk secara radial Aliran yg datang dari segala penjuru arah alur sungai memerlukan waktu yg hampir bersamaan jika terjadi hujan yg merata di seluruh DAS menyebabkan banjir besar di dekat ttk pertemuan anak 2 sungai

- BENTUK PARAREL BENTUK INI MEMPUNYAI CORAK DIMANA DUA JALUR DAERAH PENGALIRAN YANG BERSATU

- BENTUK PARAREL BENTUK INI MEMPUNYAI CORAK DIMANA DUA JALUR DAERAH PENGALIRAN YANG BERSATU DI BAGIAN PENGALIRAN AKAN BERSATU DI BAGIAN HILIR - BANJIR TERJADI DI SEBELAH HILIR TITIK PERTEMUAN KE DUA ALUR SUNGAI - BENTUK KOMPLEKS GABUNGAN DARI DUA ATAU LEBIH DAS, HANYA BEBERAPA BUAH DAERAH PENGALIRAN YANG MEMPUNYAI BENTUK KOMPLEKS

KOEFISIEN BENTUK DAS n n n KOEFISIEN INI MENYATAKAN PERBANDINGAN ANTARA LUAS DAERAH PENGALIRAN

KOEFISIEN BENTUK DAS n n n KOEFISIEN INI MENYATAKAN PERBANDINGAN ANTARA LUAS DAERAH PENGALIRAN DENGAN PANJANG SUNGAI UTAMA RUMUSNYA F = A/L 2 F = KOEFISIEN CORAK/BENTUK DAS A = LUAS DAS (km 2 L = PANJANG SUNGAI UTAMA (km) Makin besar harga F makin lebar daerah pengaliran

Aspek Topografi / Relief n n n n Kemiringan DAS ( Mean Slope of

Aspek Topografi / Relief n n n n Kemiringan DAS ( Mean Slope of Watershed = Sb ) Kemiringan Sungai Utama ( Mean Slope of Main Channel = Ss ) Median Elevasi Kemiringan sungai Su=h 85 -h 10/0, 75 x. Lb Su=kemiringan dasar sungai (%) h 85=ketinggian pada 0, 85 thd panjang sungai induk

h 10 = ketinggian pada 0, 10 thd panjang sungai induk Lb = panjang

h 10 = ketinggian pada 0, 10 thd panjang sungai induk Lb = panjang sungai induk (km)

Aspek Panjang Alur Sungai Terpanjang (Li) n Panjang Sungai Utama ke Pusat DAS (Lca)

Aspek Panjang Alur Sungai Terpanjang (Li) n Panjang Sungai Utama ke Pusat DAS (Lca) n Panjang Sungai Utama (Ls) n Panjang ‘Overland Flow” (Lg) n

Aspek Alur Sungai 1. Orde Sungai (Stream Order) 2. Tingkat Percabangan Sungai 3. 4.

Aspek Alur Sungai 1. Orde Sungai (Stream Order) 2. Tingkat Percabangan Sungai 3. 4. 5. (Bifurcation Ratio) = Rb Kerapatan Alur Sungai (Drainage Density) = D / Dd Titik Pusat DAS (Center of Gravity ) Sudut Percabangan Sungai (Angle of junction)

ORDE SUNGAI n n n ORDE ATAU URUTAN PERCABANGAN SUNGAI DI KLASIFIKASIKAN SECARA SISTEMATIK

ORDE SUNGAI n n n ORDE ATAU URUTAN PERCABANGAN SUNGAI DI KLASIFIKASIKAN SECARA SISTEMATIK BERDASARKAN URUTAN DAS BERDASARKAN JUMLAH ALUR SUNGAI UNTUK SUATU ORDE DAPAT DITENTUKAN SUATU ANGKA INDEKNYA YG MENYATAKAN TINGKAT PERCABANGAN SUNGAI DIBAWAH INI GAMBAR ORDE SUNGAI

STREAM ORDER Strahler’s scheme is most commonly used

STREAM ORDER Strahler’s scheme is most commonly used

WATERSHED BIFURCATION RATIO (WRb) n u=k n Σ Nu+1) n n WRb ------ n

WATERSHED BIFURCATION RATIO (WRb) n u=k n Σ Nu+1) n n WRb ------ n n n Rb u/u+1 (Nu + Nu = Number of stream order u Nu+1 = Number of stream order u+1 u=1 = ------------------------ Rb = Bifurcation Ratio u=k Σ u=1 Nu Rb between 3 – 5 is normal condition due to geology Rb <3 and >5 the stream pattern are influence by geology Rb >5 usely trellis and Rb <3 usely dendritic

BIFURCATION RATIO/TINGKAT PERCABANGAN SUNGAI n n n n Rb = Nu/Nu+1 Nu = jumlah

BIFURCATION RATIO/TINGKAT PERCABANGAN SUNGAI n n n n Rb = Nu/Nu+1 Nu = jumlah alur sungai orde ke U Nu+1 = jumlah alur sungai untuk orde ke u+1 TOTAL BASIN RELIEF Beda tinggi antara titik outlet dengan titik tertinggi dalam DAS H=Hm-H 1 H 1=ketinggian ttk outlet (m) Hm=ketinggian maks DAS (m)

RELIEF RATIO n n RELIEF RATIO perbandingan antara total basin relief dengan panjang sungai

RELIEF RATIO n n RELIEF RATIO perbandingan antara total basin relief dengan panjang sungai utama Rh = H/Lb H =total basin relief (m) Lb = panjang sungai utama (km)

BIFURCATION RATIO n n MENCIRIKAN DEBIT PUNCAK DAN WAKTU DASAR HIDROGRAPH MAKIN TINGGI NILAI

BIFURCATION RATIO n n MENCIRIKAN DEBIT PUNCAK DAN WAKTU DASAR HIDROGRAPH MAKIN TINGGI NILAI Rb, MAKIN BANYAK JLH TINGKAT ORDE MAKIN BANYAK SUB DAS YG DPT MENYEBABKAN MAKIN LAMA AIR HUJAN SAMPAI KE SUNGAI UTAMA MAKIN BESAR PANJANG WAKTU DASAR HIDROGRAPHNYA

RELIEF RATIO n n Makin besar relief ratio kemiringan lereng makin besar shg akan

RELIEF RATIO n n Makin besar relief ratio kemiringan lereng makin besar shg akan mempercepat aliran permukaan Makin kecil relief ratio memperlambat aliran permukaan shg erosi yg terjadi semakin kecil

TOTAL BASIN RELIEF n n n Secara tdk langsung total basin relief berhub dg

TOTAL BASIN RELIEF n n n Secara tdk langsung total basin relief berhub dg kec aliran perm DAS Makin besar nilainya, makin cepat aliran permukaan erosi yg terjadi makin besar/kuat Makin kecil nilainya makin lambat aliran permukaanya

DRAINAGE DENSITY n n Drainage density depends on climate and geology (these are the

DRAINAGE DENSITY n n Drainage density depends on climate and geology (these are the independent variables that control many aspects of fluvial geomorphology). If infiltration dominates over runoff, tend to have lower drainage density. D = 1 – 5 is normal condition , (unit in mile/square miles) D = < 1 abnormal and more flooded area D = > 5 abnormal and large areas will be drained

DRAINAGE DENSITY n n n n Suatu angka indeks yg menunjukan banyaknya aliran di

DRAINAGE DENSITY n n n n Suatu angka indeks yg menunjukan banyaknya aliran di dlm suatu DAS Dd = L/A L = jumlah panjang aliran (km) A = luas DAS (km 2) < 0, 25 km/km 2 rendah 0, 25 – 10 km/km 2 sedang 10 – 25 km/km 2 tinggi > 25 km/km 2

- Dd rendah alur sungai yg melewati batuan dg resistensi keras angkutan sedimen yg

- Dd rendah alur sungai yg melewati batuan dg resistensi keras angkutan sedimen yg terangkut aliran sungai lebih kecil jika dibandingkan pada alur sungai yg melewati batuan dg resistensi lebih lunak, jika kondisi lain yg mempengaruhinya sama - Dd sangat tinggi alur sungainya melewati batuan kedap air keadaan ini akan menunjukan bahwa air hujan yg menjadi aliran akan lebih besar jika dibandingkan daerah dg Dd rendah yang melewati batuan dg permeabilitas besar

Pengukuran Aliran (Debit) n n Pengukuran Langsung: Volumetrik dan Ambang Ukur (lebar, pendek, tajam)

Pengukuran Aliran (Debit) n n Pengukuran Langsung: Volumetrik dan Ambang Ukur (lebar, pendek, tajam) Pengukuran Tak Langsung: Velocity Area Method (Currentmeter dan Pelampung), Slope Area Method (Manning’s “n”), Dilution Method (Continous and Sudden Injection)

Pengukuran dengan Currentmeter n n n Nerawas (wadding) Dari atas perahu Dari atas “Cable

Pengukuran dengan Currentmeter n n n Nerawas (wadding) Dari atas perahu Dari atas “Cable Car” Menggunakan kabel (Winch) Dari Jembatan dengan Derek (Bridge Cranch)

Q=Ax. V Q : Debit Aliran A: Luas Penampang Sungai V: Kecepatan Aliran Metoda

Q=Ax. V Q : Debit Aliran A: Luas Penampang Sungai V: Kecepatan Aliran Metoda dengan menggunakan pelampung: Q = A x KU K = V/U = 1 – 0. 116 {(1 -λ)1/2 – 0. 1} K normal 0. 85 K < 0. 5 m 0. 60 K > 4. 0 m 0. 90 – 0. 95 Q = W x d x a x L/T Rumus Manning’s Q = A x 1/n x R 2/3 x S ½ A = Luas Penampang Sungai n = Koefisien Manning’s R = Radius Hidrolik S = Slope of energy line (permukaan air

Velocity USGS n n The rate which the flow travels along the channel reach.

Velocity USGS n n The rate which the flow travels along the channel reach. Measured in feet per second or meters per second

How do we measure velocity? Most Simplistic Float Method Current Meter Average at. 6

How do we measure velocity? Most Simplistic Float Method Current Meter Average at. 6 of the total depth

Dilution Method Saluran kecil, Aliran Turbulen dan menggunakan Larutan yg netral n Continous Injection:

Dilution Method Saluran kecil, Aliran Turbulen dan menggunakan Larutan yg netral n Continous Injection: Q=q(C 1 -C 2)/(C 2 -C 0) C 1 I II (EC-meter) C 0 n C 2 Sudden Injection: Q=(V/T) x (C 1/C 2) C 2 C 1 Air berkonsentrasi Garam tinggi secara Langsung di buang ke Sungai T

How can we relate stage to discharge? Rating Curve – relates stage to discharge

How can we relate stage to discharge? Rating Curve – relates stage to discharge Empirical relationship from observations Measure discharge at different flows

Proses Limpasan dan Komponen-Komponen Hidrograf n n n Periode tak hujan (aliran dasar, defisiensi

Proses Limpasan dan Komponen-Komponen Hidrograf n n n Periode tak hujan (aliran dasar, defisiensi lengas tanah, kurva deplesi) Periode hujan awal (intersepsi, cadangan depresi) Periode hujan (kapasitas maksimum, infiltrasi, limpasan permukaan) Periode hujan berhenti (idem periode hujan dengan akhir limpasan pada titik z) Periode tak hujan baru (lengas tanah pada kapasitas lapangan, akifer diisi kembali Gb. 6 -31, kurva deplesi berlanjut)

Analisis Hidrograf Aliran n n Data Aliran : Analisis Frequensi Data Hujan + Aliran

Analisis Hidrograf Aliran n n Data Aliran : Analisis Frequensi Data Hujan + Aliran : Unit Hidrograf Data Hujan : Metoda Rational Q=FCIA Tidak ada data: Hidrograf Satuan Sintetik. tp = Ct(Lca. L)0. 3 ; Qp=Cp[(640 A)/tp] ; Tb=3+3(tp/24); Ct(1. 8 – 2. 2); Cp(0. 56 -0. 69)

Hydrograph

Hydrograph

n n n Straightline Method (1) Fixed Base Length Method (2) Variable Slope Method

n n n Straightline Method (1) Fixed Base Length Method (2) Variable Slope Method (3) C A (3) ABCE B D (2) ABDE E (1) A-E

Hidrograf Satuan Adalah hidrograf aliran langsung yang disebabkan oleh hujan efektif dengan intensitas seragam

Hidrograf Satuan Adalah hidrograf aliran langsung yang disebabkan oleh hujan efektif dengan intensitas seragam dan jatuh merata diseluruh DAS. n Ada dua prinsip yang diterapkan yaitu (1) proporsional terhadap intensitas hujan yang sama periodenya dan (2) superposisi untuk intensitas tertentu yang beruntun waktunya. n

From Chernicoff and others, 1997 Hydrographs

From Chernicoff and others, 1997 Hydrographs

Analisis Frequensi n n n Analisis Statistik Sederhana (menguji penyebaran data antara “empherical”dengan “theoritical”)

Analisis Frequensi n n n Analisis Statistik Sederhana (menguji penyebaran data antara “empherical”dengan “theoritical”) Menggunakan kertas Probabiliti Data harus cukup panjang untuk menghitung periode ulang dari banjir yang terjadi.

Perhitungan Volume Air (Thornthwaite and Mather) n n Data hujan (P) dan evapotranspirasi (Ep)

Perhitungan Volume Air (Thornthwaite and Mather) n n Data hujan (P) dan evapotranspirasi (Ep) bulanan yang cukup panjang Peta liputan vegetasi penutup (zone perakaran) Peta jenis tanah (tekstur tanah) Peta Topografi/Rupa Bumi (Lokasi DAS dengan koordinat L/B)

Persyaratan yang diperlukan untuk akurasi perhitungan n Luas DAS sedang (>300 km 2) sampai

Persyaratan yang diperlukan untuk akurasi perhitungan n Luas DAS sedang (>300 km 2) sampai besar, 50% air yang masuk ke dalam tanah akan ke luar 50% sebagai air permukaan dibulan berikutnya Bila data Ep tidak ada dapat diperhitungkan dengan data temperatur bulanan Data tahun pertama dan tahun terakhir dari seri data tidak digunakan untuk perhitungan, karena awal perhitungan mulai dari musim hujan pada tahun perhitungan

LANGKAH-LANGKAH PERHITUNGAN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Hitung

LANGKAH-LANGKAH PERHITUNGAN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Hitung hujan (P) bulanan Hitung evapotranspirasi (EP) bulanan Hitung (P – EP) Hitung “Accumulation of Potential Water Loss” (APWL) Hitung “Water Holding Capacity” (WHC) DAS Hitung Storage (St) bulanan Hitung ΔSt bulanan Hitung Aktual Evapotranpirasi (AE), bila (P≥PE) maka AE=PE dan bila (P<PE) maka AE= P + ΔSt Hitung defisit (D) = PE – AE Hitung Surplus (S) = (P-EP) – (ΔSt) Hitung Runoff/Debit bulanan

Rumus-Rumus ΔT = 0. 006 (Z 1 – Z 2) EP = f x

Rumus-Rumus ΔT = 0. 006 (Z 1 – Z 2) EP = f x EPx = 16 [ (10 T)/I ]a I =Σi i = ( T/5 ) 1. 514 a = 0. 675 x 10 -6 I 3 – 0. 77 x 10 St = Sto. e -4 I 2 + 0. 01792 I + 0. 49239 {(-APWL)/Sto} T : temperatur Z 1 dan Z 2 : Elevasi stasiun 1 dan 2 I : indeks panas tahunan dan indeks panas bulanan (i) EPx : Evapotranspirasi Standard dengan jumlah hari bulanan (30) dan panas harian (12 jam) f : faktor koreksi letak Lintang Sto : Water Holding Capasitas (WHC) DAS maksimum

AIRTANAH (GROUNDWATER)

AIRTANAH (GROUNDWATER)

SIKLUS AIRTANAH Keywords : infiltration - percolation - recharge

SIKLUS AIRTANAH Keywords : infiltration - percolation - recharge

VERTIKAL AIRTANAH Zone lengas tanah, terpengaruh proses transpirasi Zone tidak jenuh (tidak 100% terisi

VERTIKAL AIRTANAH Zone lengas tanah, terpengaruh proses transpirasi Zone tidak jenuh (tidak 100% terisi air) Muka airtanah Zone jenuh (100% terisi air)

DIMANAKAH TERDAPAT AIRTANAH ? ? Akuifer (aquifer) Aqui = air Fer (ferre) = menerima

DIMANAKAH TERDAPAT AIRTANAH ? ? Akuifer (aquifer) Aqui = air Fer (ferre) = menerima dan mengalirkan Akuifer merupakan formasi atau perlapisan jenuh air yang mampu menyimpan dan mengalirkan airtanah dalam jumlah yang cukup. Cukup artinya mampu mengaliri atau menjadi sumber suatu sumur, sungai atau

Aquifer Bocor (Leaky) n Semi Confined Aquifer n Bila confining unit adalah semi permeable/aquitard

Aquifer Bocor (Leaky) n Semi Confined Aquifer n Bila confining unit adalah semi permeable/aquitard (lempung) Aquifuge (fuge = tertutup) n Formasi batuan yang tidak dapat menyimpan air sama sekali (kedap) (contoh: granit) Aquitard n Formasi batuan yang dapat menyimpan air, tetapi hanya dapat mengalirkannya dalam jumlah yang terbatas (contoh: lempung pasiran) Aquiclude n Formasi batuan yang tidak dapat menyimpan air dalam jumlah yang banyak (contoh: lempung)

Aquifer Bebas (Unconfined aquifer) n n Aquifer tidak tertekan. Jika muka airtanah merupakan batas

Aquifer Bebas (Unconfined aquifer) n n Aquifer tidak tertekan. Jika muka airtanah merupakan batas dari akuifer. Aquifer Tertekan (Confined aquifer) n n n Terletak di bawah atau di antara lapisan kedap air (confining layer atau impermeable) Hydraulic head atau water table terletak di atas batas aquifernya, biasa disebut piezometric atau potentiometric. Karena tekanan, kadang-kadang muka airtanah aquifer tertekan pada sumur bor dapat melebihi permukaan tanah (flowing artesian well). Aquifer Menggantung (Perched aquifer) n Terletak di atas unconfined aquifer, dan aliran airtanah ke bawah tertahan oleh confining layer yang tidak kontinyu.

AKUIFER BEBAS & TERTEKAN

AKUIFER BEBAS & TERTEKAN

AKUIFER MENGGANTUNG (PERCHED AQUIFER)

AKUIFER MENGGANTUNG (PERCHED AQUIFER)

FAKTOR 2 PENENTU KARAKTERISTIK AIRTANAH 1. CURAH HUJAN 2. MATERIAL BATUAN 3. GEOMORFOLOGI 4.

FAKTOR 2 PENENTU KARAKTERISTIK AIRTANAH 1. CURAH HUJAN 2. MATERIAL BATUAN 3. GEOMORFOLOGI 4. VEGETASI

POROSITAS BATUAN (α) n n n Porositas (α) atau kesarangan batuan adalah rasio antara

POROSITAS BATUAN (α) n n n Porositas (α) atau kesarangan batuan adalah rasio antara volume pori-pori batuan dengan total volume batuan. = volume pori 2 / volume batuan Porositas primer : tergantung dari matrix batuan itu sendiri. Porositas sekunder : karena proses solusional atau rekahan pada batuan.

A. Sedimen sortasi bagus, porositas besar B. Sortasi tidak bagus, porositas kecil C. Sortasi

A. Sedimen sortasi bagus, porositas besar B. Sortasi tidak bagus, porositas kecil C. Sortasi sedimen bagus, terisi oleh endapan yang porus, secara keseluruhan porositas bagus D. Sortasi sedimen bagus tetapi porositas berkurang karena deposit mineral yang tidak porus pada pori-pori E. Porositas tinggi karena proses solusional F. Porositas karena rekahan, tergantung pola retakan

Material Unconsolidated deposits Gravel Sand Silt Clay Batuan Fractured basalt Karst Limestone Sandstone Limestine,

Material Unconsolidated deposits Gravel Sand Silt Clay Batuan Fractured basalt Karst Limestone Sandstone Limestine, dolomite Shale Fractured crystalline rock Dense crystalline rock α (%) 25 – 40 25 – 50 35 – 50 40 – 70 5 – 50 5 – 30 0 – 20 0 – 10 0– 5

TINGGI MUKA AIRTANAH (Hydraulic head) Tinggi muka airtanah adalah tinggi elevasi tempat dikurangi kedalaman

TINGGI MUKA AIRTANAH (Hydraulic head) Tinggi muka airtanah adalah tinggi elevasi tempat dikurangi kedalaman muka airtanah. Contoh : Muka airtanah di titik A = 5 meter dpt Elevasi titik A = 150 m dpal

GERAK DAN DEBIT AIRTANAH n Hukum Darcy (1856)

GERAK DAN DEBIT AIRTANAH n Hukum Darcy (1856)

n Spesific discharge/kecepatan aliran per unit volume tabung adalah : V = Q/A =

n Spesific discharge/kecepatan aliran per unit volume tabung adalah : V = Q/A = (m 3/dt)/m 2 = m/dt n Sehingga jika kecepatan pada airtanah dikenal sebagai hydraulic conductivity/permeabilitas (K) material batuan & kemiringannya maka : V = -K (dh/d. L), sehingga debit airtanah : Q = -K. (dh/d. L). A dimana : n A = luas penampang tabung n (dh/d. L) = kemiringan/hydraulic gradient n K = kecepatan airtanah dalam batuan (permeabilitas = K)

JARING AIRTANAH/FLOWNETS n n n Peta/gambar pada media 2 dimensi yang berisi garis yang

JARING AIRTANAH/FLOWNETS n n n Peta/gambar pada media 2 dimensi yang berisi garis yang menghubungkan titik-titik yang mempunyai kedalaman airtanah (head) yang sama Airtanah akan mengalir tegak lurus (90 o) memotong kontur airtanah karena pengaruh gravitasi dari hydraulic head tinggi ke rendah Jika peta kontur dilengkapi dengan arah aliran airtanah, maka biasa disebut dengan FLOWNETS

PERMASALAHAN 2 AIRTANAH 1. Cone of depression

PERMASALAHAN 2 AIRTANAH 1. Cone of depression

2. Intrusi air laut

2. Intrusi air laut

3. Land Subsidence

3. Land Subsidence

4. Kontaminasi airtanah

4. Kontaminasi airtanah