H U MINING ENGINEERING DEPARTMENT MAD 256 SURVEYING

  • Slides: 26
Download presentation
H. U. MINING ENGINEERING DEPARTMENT MAD 256 – SURVEYING BASICS OF TRAVERSING

H. U. MINING ENGINEERING DEPARTMENT MAD 256 – SURVEYING BASICS OF TRAVERSING

What is a traverse? • A polygon of 2 D (or 3 D) vectors

What is a traverse? • A polygon of 2 D (or 3 D) vectors • Sides are expressed as either polar coordinates ( , d) or as rectangular coordinate differences ( E, N) • A traverse must either close on itself • Or be measured between points with known rectangular coordinates A closed traverse A traverse between known points

Applications of traversing • Establishing coordinates for new points (E, N)known d) ( ,

Applications of traversing • Establishing coordinates for new points (E, N)known d) ( , (E, N)known ( ( , d) (E, N)new ) d , (E, N)new

Applications of traversing • These new points can then be used as a framework

Applications of traversing • These new points can then be used as a framework for mapping existing features (E, N)known (E, N)new ) ( , d) , d) ( ) d) ( , d , ( , d ( ) (E, N)new ( , d (E, N)new (E, N)known

Applications of traversing • They can also be used as a basis for setting

Applications of traversing • They can also be used as a basis for setting out new work (E, N)known (E, N)new

Equipment • Traversing requires : n n An instrument to measure angles (theodolite) or

Equipment • Traversing requires : n n An instrument to measure angles (theodolite) or bearings (magnetic compass) An instrument to measure distances (EDM or tape)

Measurement sequence C o 2 o 168 32 60. 63 o 205 o 352

Measurement sequence C o 2 o 168 32 60. 63 o 205 o 352 B o 56 . 92 9 9 o 77. 19 2 23 21 o 9. 2 1 . 20 o 8 11 32 A 30 o o 3 E 48 76 D

Computation sequence 1. Calculate angular misclose 2. Adjust angular misclose 3. Calculate adjusted bearings

Computation sequence 1. Calculate angular misclose 2. Adjust angular misclose 3. Calculate adjusted bearings 4. Reduce distances for slope etc… 5. Compute ( E, N) for each traverse line 6. Calculate linear misclose 7. Calculate accuracy 8. Adjust linear misclose

Calculate internal angles Point Foresight Backsight Azimuth Internal Angle A 21 o 118 o

Calculate internal angles Point Foresight Backsight Azimuth Internal Angle A 21 o 118 o 97 o B 56 o 205 o 149 o C 168 o D 232 o E 303 o =(n-2)*180 Misclose Adjustment Adjusted Angle o o 232 64 At each point : • o. Measure foresight azimuth 352 120 o • Meaure backsight azimuth o • o Calculate 105 internal angle (back-fore) 48 For example, at B : • Azimuth to C = 56 o • Azimuth to A = 205 o • Angle at B = 205 o - 56 o = 149 o

Calculate angular misclose Point Foresight Backsight Azimuth Internal Angle A 21 o 118 o

Calculate angular misclose Point Foresight Backsight Azimuth Internal Angle A 21 o 118 o 97 o B 56 o 205 o 149 o C 168 o 232 o 64 o D 232 o 352 o 120 o E 303 o 48 o 105 o =(n-2)*180 535 o Misclose -5 o Adjustment -1 o Adjusted Angle

Calculate adjusted angles Point Foresight Backsight Azimuth Internal Angle Adjusted Angle A 21 o

Calculate adjusted angles Point Foresight Backsight Azimuth Internal Angle Adjusted Angle A 21 o 118 o 97 o 98 o B 56 o 205 o 149 o 150 o C 168 o 232 o 64 o 65 o D 232 o 352 o 120 o 121 o E 303 o 48 o 105 o 106 o 535 o 540 o =(n-2)*180 Misclose -5 o Adjustment -1 o

Compute adjusted azimuths • Adopt a starting azimuth • Then, working clockwise around the

Compute adjusted azimuths • Adopt a starting azimuth • Then, working clockwise around the traverse : n n n Calculate reverse azimuth to backsight (forward azimuth 180 o) Subtract (clockwise) internal adjusted angle Gives azimuth of foresight • For example (azimuth of line BC) n n Adopt azimuth of AB 23 o Reverse azimuth BA (=23 o+180 o) Internal adjusted angle at B 150 o Forward azimuth BC (=203 o-150 o)53 o 203 o

Compute adjusted azimuths C o 53 B 203 o 150 o D Line Forward

Compute adjusted azimuths C o 53 B 203 o 150 o D Line Forward Azimuth Reverse Azimuth Internal Angle AB 23 o 203 o 150 o BC 53 o CD DE EA A E AB

Compute adjusted azimuths C o D 23 o Forward Azimuth Reverse Azimuth Internal Angle

Compute adjusted azimuths C o D 23 o Forward Azimuth Reverse Azimuth Internal Angle AB 23 o 203 o 150 o BC 53 o 233 o 65 o CD 168 o o B 65 o 168 2 33 Line DE EA A E AB

Compute adjusted azimuths C o Forward Azimuth Reverse Azimuth Internal Angle AB 23 o

Compute adjusted azimuths C o Forward Azimuth Reverse Azimuth Internal Angle AB 23 o 203 o 150 o BC 53 o 233 o 65 o CD 168 o 348 o 121 o DE 227 o o 121 o 23 o B 348 53 Line o 7 22 D EA A E AB

Compute adjusted azimuths C o B 23 o D o 47 A 106 o

Compute adjusted azimuths C o B 23 o D o 47 A 106 o o 1 30 E Forward Azimuth Reverse Azimuth Internal Angle AB 23 o 203 o 150 o BC 53 o 233 o 65 o CD 168 o 348 o 121 o DE 227 o 47 o 106 o o 168 53 Line EA AB -59 o 301 o

Compute adjusted azimuths C o B 23 o D o 98 o A o

Compute adjusted azimuths C o B 23 o D o 98 o A o 1 12 E Forward Azimuth Reverse Azimuth Internal Angle AB 23 o 203 o 150 o BC 53 o 233 o 65 o CD 168 o 348 o 121 o DE 227 o 47 o 106 o EA 301 o 121 o 98 o AB 23 o (check) o 168 53 Line 7 22

( E, N) for each line • The rectangular components for each line are

( E, N) for each line • The rectangular components for each line are computed from the polar coordinates ( , d) • Note that these formulae apply regardless of the quadrant so long as whole circle bearings are used

Vector components Line Azimuth Distance E N AB 23 o 77. 19 30. 16

Vector components Line Azimuth Distance E N AB 23 o 77. 19 30. 16 71. 05 BC 53 o 99. 92 79. 80 60. 13 CD 168 o 60. 63 12. 61 -59. 31 DE 227 o 129. 76 -94. 90 -88. 50 EA 301 o 32. 20 -27. 60 16. 58 (399. 70) (0. 07) (-0. 05)

Linear misclose & accuracy • Convert the rectangular misclose components to polar coordinates Beware

Linear misclose & accuracy • Convert the rectangular misclose components to polar coordinates Beware of quadrant when calculating using tan-1 • Accuracy is given by

For the example… • Misclose ( E, N) n (0. 07, -0. 05) •

For the example… • Misclose ( E, N) n (0. 07, -0. 05) • Convert to polar ( , d) n n = -54. 46 o (2 nd quadrant) = 125. 53 o d = 0. 09 m • Accuracy n 1: (399. 70 / 0. 09) = 1: 4441

Bowditch adjustment • The adjustment to the easting component of any traverse side is

Bowditch adjustment • The adjustment to the easting component of any traverse side is given by : Eadj = Emisc * side length/total perimeter • The adjustment to the northing component of any traverse side is given by : Nadj = Nmisc * side length/total perimeter

The example… • • East misclose 0. 07 m North misclose – 0. 05

The example… • • East misclose 0. 07 m North misclose – 0. 05 m Side AB 77. 19 m Side BC 99. 92 m Side CD 60. 63 m Side DE 129. 76 m Side EA 32. 20 m Total perimeter 399. 70 m

Vector components Side E N AB 30. 16 71. 05 BC 79. 80 60.

Vector components Side E N AB 30. 16 71. 05 BC 79. 80 60. 13 CD 12. 61 -59. 31 DE -94. 90 -88. 50 EA -27. 60 16. 58 Misc (0. 07) (-0. 05) d E (pre-adjustment) d N Eadj Nadj

The adjustment components Side E N d E AB 30. 16 71. 05 0.

The adjustment components Side E N d E AB 30. 16 71. 05 0. 014 -0. 010 BC 79. 80 60. 13 0. 016 -0. 012 CD 12. 61 -59. 31 0. 011 -0. 008 DE -94. 90 -88. 50 0. 023 -0. 016 EA -27. 60 16. 58 0. 006 -0. 004 (-0. 05) (0. 070) (-0. 050) Misc (0. 07) d N Eadj Nadj

Adjusted vector components Side E N d E d N Eadj Nadj AB 30.

Adjusted vector components Side E N d E d N Eadj Nadj AB 30. 16 71. 05 0. 014 -0. 010 30. 146 71. 060 BC 79. 80 60. 13 0. 016 -0. 012 79. 784 60. 142 CD 12. 61 -59. 31 0. 011 -0. 008 12. 599 -59. 302 DE -94. 90 -88. 50 0. 023 -0. 016 -94. 923 -88. 484 EA -27. 60 16. 58 0. 006 -0. 004 -27. 606 16. 584 (-0. 05) 0. 070 -0. 050 Misc (0. 07) (0. 000)