GUI 2014 11 03 MRTOF at ISOLDE Frank

  • Slides: 14
Download presentation
GUI – 2014 -11 -03 MR-TOF at ISOLDE Frank Wienholtz - University of Greifswald

GUI – 2014 -11 -03 MR-TOF at ISOLDE Frank Wienholtz - University of Greifswald for the ISOLTRAP Collaboration http: //isoltrap. web. cern. ch wienholtz@uni-greifswald. de

ISOLTRAP overview ISOLTRAP uncertainty: 2010 ; >500 short-lived nuclides investigated 1987 1999 1994 2

ISOLTRAP overview ISOLTRAP uncertainty: 2010 ; >500 short-lived nuclides investigated 1987 1999 1994 2

ISOLTRAP overview: MR-To. F-MS 1 Ø mean kinetic energy Ekin=2. 1 ke. V Ø

ISOLTRAP overview: MR-To. F-MS 1 Ø mean kinetic energy Ekin=2. 1 ke. V Ø To. F separation due to different m/q RFQ: Ø Δt≈100 ns Ø ΔEkin/Ekin≈3% several applications possible: • • • high-resolution mass separation with Bradbury-Nielsen gate for subsequent experiments observing and gating on separated ion-ofinterest to perform further studies high-precision mass measurements with reference masses Bradbury-Nielsen gate (BNG)2, 3 MR-To. F-MS mass resolving power (FWHM) m/∆m=100 000 at 12 ms m/∆m=200 000 at 30 ms transmission ≈50% at 30 ms ion capacity ≈1000 per cycle ≈100 000 per second 1: Wollnik & Przewloka, Int. J. Mass Spectrom. Ion Proc. 96, 267 (1990); 2: Bradbury & Nielsen, Phys. Rev. 49, 388 (1936); 3: Plass et al. , NIM B 266, 4560 (2008) Wolf et al. , IJMS 313, 8 (2012); Wolf et al. , IJMS 349 -350, 123 (2013); 3

MR-To. F-MS at ISOLTRAP: in-trap lift Ø capture and ejection with one electrode simple

MR-To. F-MS at ISOLTRAP: in-trap lift Ø capture and ejection with one electrode simple technique, stable mirror potentials Ø decouple MR-To. F-MS and adjacent beamline independent optimization Ø adjust ions’ kinetic energy To. F focusing, max. mass resolving power in-trap lift 3 2 1 Injection Storage Ejection only one parameter to adjust Wolf et al. , IJMS 313, 8 (2012) 4

MR-To. F ion-beam analysis Ion-beam composition analysis Ø Ø Ø direct feedback for target/line

MR-To. F ion-beam analysis Ion-beam composition analysis Ø Ø Ø direct feedback for target/line optimization sampling of release curve possible single ion sensitivity to detect lowest yields no upper limit on half-life as with decay station not hindered by decay branching ratio target release curve 99 Rb+ target heating increased by 70 K T 1/2=54 ms Wolf et al. , IJMS 349 -350, 123 (2013); Kreim et al. , NIM B, accepted for publication (2013) 5

MR-To. F ion-beam analysis 6

MR-To. F ion-beam analysis 6

MR-To. F RILIS yield optimization MR-To. F analyzer to investigate resonant laser ionization of

MR-To. F RILIS yield optimization MR-To. F analyzer to investigate resonant laser ionization of nuclides far from stability Ø fast, sensitive tool to improve ionization eff. Ø high dynamic range: 1 -10 e 5 counts/s Ø counts free from background contamination Ø not limited by decay branching ratio Ø help to provide isomerically pure beams 185 Tl+ 185 Au+ 185 Tl+ scan: RILIS first excitation step Wolf et al. , IJMS 349 -350, 123 (2013); Kreim et al. , NIM B, accepted for publication (2013) 7

MR-To. F <--> laser scans of hyperfine structure (Total counts - 149 Dy) /

MR-To. F <--> laser scans of hyperfine structure (Total counts - 149 Dy) / 149 Dy ≈ 70

MR-To. F <--> laser scans of hyperfine structure

MR-To. F <--> laser scans of hyperfine structure

MR-To. F half life measurements A=97 ? 97 Sr Cooling time in the buncher

MR-To. F half life measurements A=97 ? 97 Sr Cooling time in the buncher In Steps of 60 ms 610 ms Time of flight after 500 revs 97 Rb

MR-To. F half life measurements

MR-To. F half life measurements

Possible applications @ ISOLDE Ø Versatile tool for beam analysis especially for ion yields

Possible applications @ ISOLDE Ø Versatile tool for beam analysis especially for ion yields which are not detectable by FCs or accessible by decay spectroscopy Ø Continues observation of the beam composition possible Ø Beam optimisation Ø Varying different target parameters Ø Beam line optimisation (transport) Ø Fast response to laser on/off or protons on/off Ø Laser frequency optimisation Ø Delivery of highly pure beams for experiments with such needs Ø Beam purification for REX-Trap and EBIS Ø Fast stacking in the Penning trap possible 12

Thanks to… S. George, M. Rosenbusch, R. N. Wolf, L. Schweikhard P. Ascher, D.

Thanks to… S. George, M. Rosenbusch, R. N. Wolf, L. Schweikhard P. Ascher, D. Atanasov, Ch. Böhm, Ch. Borgmann, R. B. Cakirli, S. Eliseev, T. Eronen, D. Kissler, S. Naimi, K. Blaum D. Beck, F. Herfurth, A. Herlert, E. Minaya-Ramirez, D. Neidherr, Y. Litvinov G. Audi, V. Manea, M. Wang, D. Lunney M. Kowalska, S. Kreim, J. Kurcewicz J. Stanja, A. Welker, K. Zuber N. Althubiti, T. Cocolios Grants No. : 05 P 12 HGCI 1 05 P 12 HGFNE M. Breitenfeldt http: //isoltrap. web. cern. ch wienholtz@uni-greifswald. de 13

MR-To. F-MS: voltage stability mirror electrode 5: turn-around point Ø limiting long-term stability Ø

MR-To. F-MS: voltage stability mirror electrode 5: turn-around point Ø limiting long-term stability Ø mass resolving power M 4 M 5 Ø Temperature stabilization of supply voltages to <100 m. K Ø To. F temperature coefficient: Wolf et al. , NIM A 686, 82 (2012) 14