GSI Helmholtzzentrum fr Schwerionenforschung Gmb H Space Charge

  • Slides: 17
Download presentation
GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Space Charge Solver in py. ORBIT compared to

GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Space Charge Solver in py. ORBIT compared to those in PATRIC and Madx Sabrina Appel, GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 1

Outline § Space charge (SC) effects in SIS 18/100 § SC Solver § Frozen

Outline § Space charge (SC) effects in SIS 18/100 § SC Solver § Frozen SC Solver (Madx) § PIC Solver § Longitudinal SC (pyorbit) § Transversal SC § PATRIC § py. ORBIT § SC matching § Transversal and longitudinal § Tune footprint for Madx, py. ORBIT and PATRIC § Summery and Outlook GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 2

SIS 18 Space charge effects § Intensity goal: The space charge limit of ΔQy=0.

SIS 18 Space charge effects § Intensity goal: The space charge limit of ΔQy=0. 5 § Injection energy: 11. 4 Me. V/u (ß 0=0. 155), Emittances: § Space charge induced voltage reduction by 40% § Dual rf bucket with flattened bunch profile SIS 18 § Codes demands: § Resolution of synchrotron motion (long bunches) -> 2. 5 D SC solver § Dual rf § Matching routines for longitudinal and transversal space charge § Studies: § Long term simulation after MTI § Comparison to frozen space charge simulation results GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 3

SIS 100 Bunch compression § Intense short ions beam required by experiments for plasma

SIS 100 Bunch compression § Intense short ions beam required by experiments for plasma physics and exotic elements productions -> 50 ns short U 28+ beam with 5 x 1011 particles per bunch at 1. 5 Ge. V/u § Space charge affects the optics § Large transverse space charge tune shift 450 ns M. Steck STORI’ 08 50 ns S. Aumon ICFA SC’ 13 § § § GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Studies: Space charge effect on the transverse beam distribution (2 D) Effects during bunch compression (magnets error, resonances etc. . ) Sabrina Appel | PBBP 20 May 2014 4

PATRIC: Space charge tune shift ü Matched 3 D bunch distribution (in a dual

PATRIC: Space charge tune shift ü Matched 3 D bunch distribution (in a dual rf bucket) Bunch distribution (longitudinal-horizontal) Tune footprint with space charge (SIS 18) Current profile Local dipole (offset) moment (‘noise’) -> FFT-> tune spectra O. Boine-Frankenheim, ICFA SC 2013 GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 5

Frozen space charge y § The solution of Poisson equation for a 2 D

Frozen space charge y § The solution of Poisson equation for a 2 D Gaussian can be calculated analytical z x § Also the space charge tune spread as a function of the particle amplitude § Tracking: The kick acting on the particle is computed from the electric field (analytical) approximation § Sometimes during tracking simulations the beam intensity and Gaussian beam size are adapted See e. g. A. Burov, et. al. , Transverse instabilities of coasting beams with space charge, Phys. Rev. ST-AB (2009) M. Bassetti, et. al. , Closed expression for the electrical field of a two-dimensional Gaussian charge, CERN-ISR-TH/80 -06 GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 6

PIC algorithms: Space charge routine Motion of particles (x, x’, y, y’, z, δ)

PIC algorithms: Space charge routine Motion of particles (x, x’, y, y’, z, δ) Interpolation of field at particles Space charge routine (self-consistent) Interpolation of density on grid Integration of field equation on grid (Poisson equation) § The particle-to-particle and particle-to-environment interactions are calculated with PIC (Particle In Cell) algorithms § Space charge forces or potential are obtained by solving the Poisson equation (2 D: Solve the electric field equation) § Solving the integral from on grid with FFT and boundary condition for arbitrary beam distribution GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 7

Py. Orbit: Longitudinal impedance + space charge § The longitudinal impedance is represented by

Py. Orbit: Longitudinal impedance + space charge § The longitudinal impedance is represented by its harmonic content in terms of the fundamental ring frequency Particle are binned longitudinally (1 D) z FFT of binned distribution Znsc+Znextern void LSpace. Charge. Calc: : track. Bunch(Bunch* bunch){ … for(int n = 1; n < n. Bins / 2; n++){ real. Part = std: : real(_z. Imped_n[n]); imag. Part = std: : imag(_z. Imped_n[n]) + z. Space. Charge_n; _z[n] = n * sqrt(real. Part * real. Part + imag. Part * imag. Part); _chi[n] = atan 2(imag. Part, real. Part); } … for(int n = 1; n < n. Bins / 2; n++){ cos. Arg = n * (angle + Orbit. Const: : PI) + _fftphase[n] + _chi[n]; kick += 2 * _fftmagnitude[n] * _z[n] * cos(cos. Arg); } return kick; } GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP Calculate and add kicks for each particles § Similar approach in PATRIC Source: Talks by S. Cousineau and J. A. Holmes, ORNL 20 May 2014 8

Py. Orbit: Transverse Space Charge Solver § Solving Poisson equation on 2 D grid

Py. Orbit: Transverse Space Charge Solver § Solving Poisson equation on 2 D grid with fast FFT solver y § Particle are binned in 2 D rectangular grid (momentum-conserving interpolation scheme) § Grid is adapt to beam size z § Kicks are weighted by local longitudinal density (non-uniform distribution) x void Space. Charge. Force. Calc 2 p 5 D: : track. Bunch(Bunch* bunch, double length){ … force. Solver->find. Force(rho. Grid, force. Grid. X, force. Grid. Y); force. Grid. X->interpolate. Bilinear(x, y, fx); force. Grid. Y->interpolate. Bilinear(x, y, fy); … for(i=0, bunch. Size, i++){ Lfactor = z. Grid->get. Value(z) * factor; bunch->xp(i) += fx * Lfactor; bunch->yp(i) += fy * Lfactor; } } Source: Talks by S. Cousineau and J. A. Holmes, ORNL and py. ORBIT source code GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 9

PATRIC: Transverse Space Charge Solver y § Bunch is sliced n times § The

PATRIC: Transverse Space Charge Solver y § Bunch is sliced n times § The 2 D space charge field is computed for each slice Sliced bunch § Grid is static z (fast 2. 5 D Poisson solver) Pics. gather. XYZ(charge*qe/rho_xyz. get_dz(), rho_xyz); # 3 D Grid // send and receive density ghost grids to neighbor MPI_Isend(rho_xyz. get_ghostl(), …. ) MPI_Recv(rho_xy_tmp. get_grid(), , …) … poisson_xyz(Ex 3, Ey 3, rho_xyz, gf 1); # 2 D Poisson solver for slice // send and receive efield ghost grids to neighbor slices MPI_Isend(Ex 3[0]. get_grid(), …) MPI_Recv(Ex 3. get_ghostr(), …) … Pics. kick(Ex 3, Ey 3, ds) GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP x slice-length: ∆z≠∆s § Corrected interpolation MPI send/receive to neighbor slices 2 D grids ghost layers macroslice Ø Grid slices “feel” all other slices Oliver’s talk, ICAP 2012 20 May 2014 10

Trans. SC matching in py. ORBIT and PATRIC See e. g. Transverse matching with

Trans. SC matching in py. ORBIT and PATRIC See e. g. Transverse matching with space chage (Venturini, Reiser, PRL 1998) § Solving of the two coupled beam envelopes equation with space charge envx, envxs, envys, Dxs, s = match_root(lattice, emitx, emity, sigma_p, Ksc) phasex, phasey = phase_advance(envx, envy, Dx, emity, dp, s) # check Shown only 10% of computed macro-particles py. ORBIT See e. g. : Oliver’s presentation tomorrow GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 11

Long. SC matching for arbitrary rf wave forms See e. g. Hofmann-Pedersen, The bunch

Long. SC matching for arbitrary rf wave forms See e. g. Hofmann-Pedersen, The bunch distribution can be matched to arbitrary rf bucket forms (1979) O. Boine-F. , rf barrier compression with space charge, Phys. Rev. ST-AB (2010 ‘Hamiltonian’: Single rf wave: Elliptic bunch distribution: Potential function: Dual rf wave: Potential at the bunch end: Maximum velocity in the bunch center: GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 12

Long. SC matching in py. ORBIT and PATRIC 1. Set rf field and potential

Long. SC matching in py. ORBIT and PATRIC 1. Set rf field and potential on 2 D grid (Ny=Nx=2 Nbin) Shown only 10% of computed macro-particles py. ORBIT, dual rf machting. set_rf_dual(rf_field, Yrf_field, RFHNum, Ratio. Voltage) 2. Determine matched voltage and beam distribution f(z, v) on grid V 0, distf = machting. match_elliptic(Yrf_field, distf, zm, dp. Bunch, Zs, intensity) 3. Generate random numbers sets xi , vi from f(zj, vk) V 0 = 85 k. V, Vsc = 50 k. V x, dp = machting. match. PIC(NPIC, distf) -> also Gaussian distribution possible GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 13

Betatron tune calculation § Average Phase advance (APA) method § Non instantaneous § Evaluation

Betatron tune calculation § Average Phase advance (APA) method § Non instantaneous § Evaluation of phase difference for each particle after each turn (normalized coordinate system) § Lattice function must be known § FFT method § Non instantaneous § FFT analysis of the average transvers oscillations § Resolution given by the number of average turns/cells § One-Turn-Matrix (OTM) method § Quasi instantaneous § Reconstruction of OTM for each particle § Trace or eigenvalues of OTM gives fraction turn See e. g: Bartolini, R, Bazzani, A, Tune evaluation in simulations and experiments, CERN SL/95 -84 (AP) Luccio, A, D’Imperio N. , Eigenvalues of the One-turn Matrix, C-A/AP’ 126 GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 14

Madx: Tune footprint § Frozen space charge § Simple FODO lattice with SC bb_i:

Madx: Tune footprint § Frozen space charge § Simple FODO lattice with SC bb_i: beam, sigx: =sigxi, sigy: =sigyi, bbdir=1; fodo 0: line=(bb_1, dr, bb_2, qf, bb_3, dr, bb_4, dr, bb_5, qd, bb_6, dr); fodo_mult: line=(rfcav, 12*fodo 0); ü Coasting beam o Bunch beam • SC tune spread is a factor of two too small • Meaning of the options in the input files are unclear coasting Qy Qy bunch ? Qx Qx Result from Stefan Sorge GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 15

PATRIC versus py. ORBIT § Tune footprint for 2 D space charge solver §

PATRIC versus py. ORBIT § Tune footprint for 2 D space charge solver § In both codes constant focusing and coasting beam has been used § Good agreement between the two codes PATRIC KV py. ORBIT KV Gauss Qy Qy Gauss Qx § Qx Qx Qx In the early version of the presentation the tune footprint of py. ORBIT simulation results with a Gauss distribution was distributed over the whole white diamond -> probable an effects of the lattice, constant focusing gives the expect tune footprint for all cases GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 16

Summery and Outlook § Space charge (SC) effects in SIS 18/100 § SC Solver

Summery and Outlook § Space charge (SC) effects in SIS 18/100 § SC Solver § Frozen SC Solver § Only Gaussian distribution § Solution of Poisson equation is solved analytical § PIC Solver § Arbitrary beam distribution and self-consistent § Poisson equation solved on Grid with FFT (different approaches) § SC matching py. ORBIT and PATRIC for trans. + long. § Tune footprint for Madx, py. ORBIT and PATRIC § More or less in good agreement § SIS 18/100: Bunch compression (“ 2 D”) § Long term “ 3 D” simulation in SIS 18 after MTI GSI Helmholtzzentrum für Schwerionenforschung Gmb. H Sabrina Appel | PBBP 20 May 2014 17