Genetic simplex model in the classical twin design

  • Slides: 41
Download presentation
Genetic simplex model in the classical twin design Conor Dolan & Sanja Franic Boulder

Genetic simplex model in the classical twin design Conor Dolan & Sanja Franic Boulder Workshop 2016 boulder 2016 dolan & franic simplex model 1

Two general approaches to longitudinal modeling (not mutually exclusive) Markov models: (Vector) autoregressive models

Two general approaches to longitudinal modeling (not mutually exclusive) Markov models: (Vector) autoregressive models for continuous data (Hidden) Markov transition models discrete data Growth curve models: Focus on linear and non-linear growth curves Typically multilevel or random effects model Which to use? Use the model that fit theory / data / hypotheses boulder 2016 dolan & franic simplex model 2

Growth curve modeling ? If you’re interested in growth trajectories. Linear or non-linear: Autoregressive

Growth curve modeling ? If you’re interested in growth trajectories. Linear or non-linear: Autoregressive modeling ? If you’re mainly interested in stability. Can be combined (this afternoon) boulder 2016 dolan & franic simplex model 3

First order autoregression model. A (quasi) simplex model (var(e)>0). zx zx b 2, 1

First order autoregression model. A (quasi) simplex model (var(e)>0). zx zx b 2, 1 x 1 y 1 b 4, 3 x 3 1 y 2 1 e 1 b 3, 2 x 2 1 zx 1 1 y 3 y 4 1 1 1 e 2 b 01 x 4 e 3 e 4 b 03 b 02 b 04 1 boulder 2016 dolan & franic simplex model 4

First order autoregression model. A quasi simplex model (var(e)>0). var(x 1) true score var(e

First order autoregression model. A quasi simplex model (var(e)>0). var(x 1) true score var(e 1) “error” yti = b 0 t + xti + eti xti = bt-1, t xt-1 i + zxti var(yt) = var(xt) + var(et) var(xt) = bt-1, t 2 var(xt-1) + var(zxt) cov(xt, xt-1) = bt-1, tvar(xt-1) cov(yt, yt-1) = bt-1, tvar(xt-1) boulder 2016 dolan & franic simplex model 5

First order autoregression model. var(e 1) var(e 4) Identification issue: var(e 1) and var(et)

First order autoregression model. var(e 1) var(e 4) Identification issue: var(e 1) and var(et) are not identified. Solution set to zero, or equate var(e 1) = var(e 2) , var(e 3) = var(e 4) boulder 2016 dolan & franic simplex model 6

var(yt) = var(xt) + var(et) var(xt) = bt-1, t 2 var(xt-1) + var(zxt) cov(xt,

var(yt) = var(xt) + var(et) var(xt) = bt-1, t 2 var(xt-1) + var(zxt) cov(xt, xt-1) = bt-1, tvar(xt-1) cov(yt, yt-1) = bt-1, tvar(xt-1) Standardized stats part I: “Reliability” at each t, rel(yt) : rel(yt) = var(xt) / {var(xt) + var(et)} Interpretation: % of variance in yt due to latent xt boulder 2016 dolan & franic simplex model 7

var(yt) = var(xt) + var(et) var(xt) = bt-1, t 2 var(xt-1) + var(zxt) cov(xt,

var(yt) = var(xt) + var(et) var(xt) = bt-1, t 2 var(xt-1) + var(zxt) cov(xt, xt-1) = bt-1, tvar(xt-1) cov(yt, yt-1) = bt-1, tvar(xt-1) Standardized stats part II: Stability at level of X, stab(Xt, Xt-1): bt-1, t 2 var(xt) / {bt-1, t 2 var(xt-1) + var(zxt)} Interpretation: % of the variance in xt due to xt-1 boulder 2016 dolan & franic simplex model 8

var(yt) = var(xt) + var(et) var(xt) = bt-1, t 2 var(xt-1) + var(zxt) cov(xt,

var(yt) = var(xt) + var(et) var(xt) = bt-1, t 2 var(xt-1) + var(zxt) cov(xt, xt-1) = bt-1, tvar(xt-1) cov(yt, yt-1) = bt-1, tvar(xt-1) Standardized stats part III: Correlation t, t-1, cor(t, t-1): bt-1, t var(xt-1) / {sd(yt-1) * sd(yt)} sd(yt) = √(var(xt) + var(et)) var(xt) = bt-1, t var(xt-1) + var(zxt) Interpretation: strength of linear relationship boulder 2016 dolan & franic simplex model 9

. 51 zx 1. 7 x 1 . 51 zx . 7 x 2

. 51 zx 1. 7 x 1 . 51 zx . 7 x 2 y 1 y 2 1 . 25 Covariance 1. 250 0. 700 1. 25 0. 490 0. 70 0. 343 0. 49 1 y 3 y 4 e 3 . 25 matrix 0. 49 0. 343 0. 70 0. 490 1. 25 0. 700 0. 70 1. 250 1 1 e 2 . 25 x 4 1 1 e 1 . 7 x 3 1 1 zx e 4 . 25 Correlation matrix 1. 0000 0. 560 0. 392 0. 5600 1. 000 0. 560 0. 3920 0. 560 1. 000 0. 2744 0. 392 0. 560 boulder 2016 dolan & franic simplex model 0. 2744 0. 3920 0. 5600 1. 0000 10

reliability: rel(xt) = var(xt) / {var(xt) + var(et)} = 1/ (1+. 25) = 1/1.

reliability: rel(xt) = var(xt) / {var(xt) + var(et)} = 1/ (1+. 25) = 1/1. 25 =. 8 R 2: bt-1, t 2 var(xt-1) / {bt-1, t 2 var(xt-1) + var(zxt)} = {. 72 * 1} / (. 72 * 1 +. 51) =. 49/1 =. 49 cor(t, t+1) : bt-1, t var(xt-1) / {sd(yt-1) * sd(yt)} ={. 7 * 1} / {√ 1. 25*√ 1. 25} =. 56 boulder 2016 dolan & franic simplex model 11

0 0 zx 2 x 1 zx 3 x 2 1 y 1 1

0 0 zx 2 x 1 zx 3 x 2 1 y 1 1 y 2 1 e 1 0 zx 4 x 3 x 4 1 1 y 3 y 4 1 e 2 1 1 e 3 e 4 What happens if var(zxt) = 0? boulder 2016 dolan & franic simplex model 12

Special case: factor model var(zxt) (t=2, 3, 4) = 0 b 2, 1 x

Special case: factor model var(zxt) (t=2, 3, 4) = 0 b 2, 1 x 1 b 3, 2 x 3 1 1 y 2 1 x 4 1 1 y 3 y 4 1 1 1 e 2 e 1 b 4, 3 e 4 x 1 y 2 1 e 1 y 3 1 e 2 y 4 1 1 e 3 boulder 2016 dolan & franic simplex model e 4 13

Multivariate decomposition of phenotypic covariance matrix (Tx. T, say T=4): Sph = SA +

Multivariate decomposition of phenotypic covariance matrix (Tx. T, say T=4): Sph = SA + SC + SE Sph 12 Sph 2 SA + SC + SE r SA + SC + SE = r SA + SC + SE (r=1 or. 5) boulder 2016 dolan & franic simplex model 14

Sph = SA + SC + SE Estimate SA using a Cholesky-decomp S A

Sph = SA + SC + SE Estimate SA using a Cholesky-decomp S A = D AD At DA = d 11 d 21 d 31 d 41 0 d 22 d 32 d 42 0 0 d 33 d 43 0 0 0 d 44 boulder 2016 dolan & franic simplex model 15

Sph = SA + SC + SE Model SA using a simplex model SA

Sph = SA + SC + SE Model SA using a simplex model SA = (I-B)A-1 YA (I-B)A-1 t + QA boulder 2016 dolan & franic simplex model 16

SA = (I-BA) -1 YA (I-BA) -1 t + QA BA = 0 0

SA = (I-BA) -1 YA (I-BA) -1 t + QA BA = 0 0 b. A 21 0 0 b. A 32 0 0 b. A 43 0 boulder 2016 dolan & franic simplex model 17

SA = (I-BA) -1 YA (I-BA) -1 t + QA YA = var(A 1)

SA = (I-BA) -1 YA (I-BA) -1 t + QA YA = var(A 1) 0 0 0 var(z. A 2) 0 0 0 var(z. A 3) 0 0 0 var(z. A 4) boulder 2016 dolan & franic simplex model 18

SA = (I-BA) -1 YA (I-BA) -1 t + QA QA = var(a 1)

SA = (I-BA) -1 YA (I-BA) -1 t + QA QA = var(a 1) 0 0 0 var(a 2) 0 0 var(a 3) 0 0 0 var(a 4) required: var(a 1) = var(a 2) var(a 3) = var(a 4) boulder 2016 dolan & franic simplex model 19

The genetic A simplex boulder 2016 dolan & franic simplex model 20

The genetic A simplex boulder 2016 dolan & franic simplex model 20

boulder 2016 dolan & franic simplex model 21

boulder 2016 dolan & franic simplex model 21

Occasion specific effects required: var(a 1) = var(a 2) var(a 3) = var(a 4)

Occasion specific effects required: var(a 1) = var(a 2) var(a 3) = var(a 4) var(e 1) = var(e 2) var(e 3) = var(e 4) var(c 1) = var(c 2) var(c 3) = var(c 4) boulder 2016 dolan & franic simplex model 22

Question: h 2, c 2, and e 2 at each time point? var(yt) =

Question: h 2, c 2, and e 2 at each time point? var(yt) = {var(At) + var(at)} + {var(Ct) + var(ct)} + {var(Et) + var(et)} h 2= {var(At) + var(at)} / var(yt) c 2= {var(Ct) + var(ct)} / var(yt) e 2= {var(Et) + var(et)} / var(yt) boulder 2016 dolan & franic simplex model 23

contributions to stability (A, C, E) t-1 to t b. At-1, t 2 var(At-1)

contributions to stability (A, C, E) t-1 to t b. At-1, t 2 var(At-1) / {b. At-1, t 2 var(At-1) + var(z. At)} b. Ct-1, t 2 var(Ct-1) / {b. Ct-1, t 2 var(Ct-1) + var(z. Ct)} b. Et-1, t 2 var(Et-1) / {b. Et-1, t 2 var(Et-1) + var(z. Et)} boulder 2016 dolan & franic simplex model 24

contributions of A to Phenotypic stability t-1 to t b. At-1, t 2 var(At-1)

contributions of A to Phenotypic stability t-1 to t b. At-1, t 2 var(At-1) {b. At-1, t 2 var(At-1) + var(z. At)} + {b. Ct-1, t 2 var(Ct-1) + var(z. Ct)} + {b. Et-1, t 2 var(Et-1) + var(z. Et)} boulder 2016 dolan & franic simplex model 25

. 8 . 0195. 2. 95 . 5 SA =. 2. 184. 2 SA

. 8 . 0195. 2. 95 . 5 SA =. 2. 184. 2 SA =. 8. 4. 4. 8 Sy = SA + SA = 1. 584 1 . 6 h 2 at t=1? answer: . 2 (e 2=. 8) h 2 at t=2? answer: . 2 (r 2=. 8) correlation between A 1 and A 2? . 184 / (√. 2*√. 2) =. 92 correlation between E 1 and E 2? . 4 / (√. 8*√. 8) =. 50 covariance between Y 1 and Y 2? . 584 contribution of A to covariance Y 1 and Y 2? . 184/. 584 =. 315 contribution of E to covariance Y 1 and Y 2? . 4/. 584 =. 685 boulder 2016 dolan & franic simplex model 26

Nivard et al, 2014 Anx/dep stabilityboulder due 2016 to A and E from 3

Nivard et al, 2014 Anx/dep stabilityboulder due 2016 to A and E from 3 y to 63 years 27 dolan & franic simplex model

Sanja’s Practical: the genetic simplex model applied to FSIQ at 4 occasions. But first.

Sanja’s Practical: the genetic simplex model applied to FSIQ at 4 occasions. But first. . Variations on theme boulder 2016 dolan & franic simplex model 28

Hottenga, etal. Twin Research and Human Genetics, 2005 boulder 2016 dolan & franic simplex

Hottenga, etal. Twin Research and Human Genetics, 2005 boulder 2016 dolan & franic simplex model 29

boulder 2016 dolan & franic simplex model Birley et al. Behav Genet 2005 30

boulder 2016 dolan & franic simplex model Birley et al. Behav Genet 2005 30

“Niche-picking” During development children seek out and create and are furnished surrounding (E) that

“Niche-picking” During development children seek out and create and are furnished surrounding (E) that fit their phenotype. A smart child growing up will pick the niche that fits her/her phenotypic intelligence. A anxious child growing up may pick out the niche that least aggrevates his / her phenotypic anxiety. Phenotype of twin 1 at time t -> environment of twin 1 at time t+1 boulder 2016 dolan & franic simplex model 31

Mutual influences During development children’s behavior may contribute to the environment of their siblings.

Mutual influences During development children’s behavior may contribute to the environment of their siblings. A smart child growing up will pick the niche that fits her/her phenotypic intelligence and in so doing may influence (contriibute to) the environment of his or her sibling. A behavior of an anxious child may be a source of stress for his or her siblings. Phenotype of twin 1 at time t -> environment of twin 2 at time t+1 boulder 2016 dolan & franic simplex model 32

a a a A A y y e E e E E c C

a a a A A y y e E e E E c C E e E e e y y A A a A, C, E uncorrelated a boulder 2016 dolan & franic simplex model a 33

A A A A 1 y y a 1 E 1 y a 2

A A A A 1 y y a 1 E 1 y a 2 E b 1 E b 2 E b 3 E E E E b 2 b 1 1 a 1 y a 3 E b 3 a 2 E a 3 E y y A A 1 A A boulder 2016 dolan & franic simplex model A 34

boulder 2016 dolan & franic simplex model 35

boulder 2016 dolan & franic simplex model 35

Environments selected by genotypes (Scarr & Mc. Cartny, 1983; Plomin, De. Fries & Loehlin,

Environments selected by genotypes (Scarr & Mc. Cartny, 1983; Plomin, De. Fries & Loehlin, 1977) Sibling effects (Carey, 1986, Behav Genet 16: 319– 341) boulder 2016 dolan & franic simplex model 36

boulder 2016 dolan & franic simplex model 37

boulder 2016 dolan & franic simplex model 37

boulder 2016 dolan & franic simplex model 38

boulder 2016 dolan & franic simplex model 38

boulder 2016 dolan & franic simplex model 39

boulder 2016 dolan & franic simplex model 39

boulder 2016 dolan & franic simplex model 40

boulder 2016 dolan & franic simplex model 40

Mi - chael boulder 2016 dolan & franic simplex model 41

Mi - chael boulder 2016 dolan & franic simplex model 41