General Linear Model General Linear Model regressors Y

  • Slides: 31
Download presentation
General Linear Model

General Linear Model

General Linear Model regressors Y 1 Y 2 X 11 … X 1 l

General Linear Model regressors Y 1 Y 2 X 11 … X 1 l … X 1 L X 21 … X 2 l … X 2 L β 1 β 2 ε 1 ε 2 . . . XJ 1 … XJl … XJL βL = YJ time points Y Observed data = + εJ time points regressors X Design Matrix * β Parameters + ε Residuals/Error

Design Matrix rest task 0 0 0 0 1 1 1 1 Conditions On

Design Matrix rest task 0 0 0 0 1 1 1 1 Conditions On Off On Use ‘dummy codes’ to label different levels of an experimental factor (eg. On = 1, Off = 0). time

Design Matrix 5 4 4 2 3 1 6 5 2 Covariates Parametric variation

Design Matrix 5 4 4 2 3 1 6 5 2 Covariates Parametric variation of a single variable (eg. Task difficulty = 1 -6) or measured values of a variable (eg. Movement).

Design Matrix 1 1 1 1. . . Constant Variable Models the baseline activity

Design Matrix 1 1 1 1. . . Constant Variable Models the baseline activity (eg. Always = 1)

Design Matrix Time Regressors The design matrix should include everything that might explain the

Design Matrix Time Regressors The design matrix should include everything that might explain the data.

General Linear Model regressors Y 1 Y 2 X 11 … X 1 l

General Linear Model regressors Y 1 Y 2 X 11 … X 1 l … X 1 L X 21 … X 2 l … X 2 L β 1 β 2 ε 1 ε 2 . . . XJ 1 … XJl … XJL βL = YJ time points Y Observed data = + εJ time points regressors X Design Matrix * β Parameters + ε Residuals/Error

Error • Independent and identically distributed iid

Error • Independent and identically distributed iid

Ordinary Least Squares 35 Residual sum of square: The sum of the square difference

Ordinary Least Squares 35 Residual sum of square: The sum of the square difference between actual value and fitted value. 30 25 20 e 15 10 5 0 0 5 10 15

Ordinary Least Squares 35 N åe t =1 30 2 t = minimum 25

Ordinary Least Squares 35 N åe t =1 30 2 t = minimum 25 20 15 e 10 5 0 0 -5 5 10 15

Ordinary Least Squares Y = Xβ+e e = Y-Xβ XTe=0 => XT(Y-Xβ)=0 => XTY-XTXβ=0

Ordinary Least Squares Y = Xβ+e e = Y-Xβ XTe=0 => XT(Y-Xβ)=0 => XTY-XTXβ=0 => XTXβ=XTY => β=(XTX)-1 XTY y Xβ x 1 β 1 x 2 β 2 e

f. MRI Y = Observed data X Design Matrix * β + ε Parameters

f. MRI Y = Observed data X Design Matrix * β + ε Parameters Residuals/Error 12

Problems with the model

Problems with the model

The Convolution Model Expected BOLD HRF Impulses =

The Convolution Model Expected BOLD HRF Impulses =

Convolve stimulus function with a canonical hemodynamic response function (HRF): HRF Original Convolved HRF

Convolve stimulus function with a canonical hemodynamic response function (HRF): HRF Original Convolved HRF

Physiological Problems

Physiological Problems

Noise Low-frequency noise Solution: High pass filtering

Noise Low-frequency noise Solution: High pass filtering

discrete cosine transform (DCT) set blue black green red = data = mean +

discrete cosine transform (DCT) set blue black green red = data = mean + low-frequency drift = predicted response, taking into account low-frequency drift = predicted response, NOT taking into account low-frequency drift

Assumptions of GLM using OLS All About Error

Assumptions of GLM using OLS All About Error

Unbiasedness Expected value of beta = beta

Unbiasedness Expected value of beta = beta

Normality

Normality

Sphericity

Sphericity

Homoscedasticity

Homoscedasticity

not

not

Independence

Independence

Autoregressive Model y = Xβ + e over time et = aet-1 + ε

Autoregressive Model y = Xβ + e over time et = aet-1 + ε autocovariance function a should = 0

Thanks to… • Dr. Guillaume Flandin

Thanks to… • Dr. Guillaume Flandin

References • http: //www. fil. ion. ucl. ac. uk/spm/doc/books/hbf 2/pdfs/Ch 7. pdf • http:

References • http: //www. fil. ion. ucl. ac. uk/spm/doc/books/hbf 2/pdfs/Ch 7. pdf • http: //www. fil. ion. ucl. ac. uk/spm/course/slides 10 vancouver/02_General_Linear_Model. pdf • Previous Mf. D presentations