GE Energy Dynamic Modeling in PSLF Overview Copyright

  • Slides: 17
Download presentation
GE Energy Dynamic Modeling in PSLF - Overview Copyright© 2006 General Electric International, Inc.

GE Energy Dynamic Modeling in PSLF - Overview Copyright© 2006 General Electric International, Inc. 1 6/17/2021

Power Plant Model Elements -- Data for “Network Algebraic Equations” is same data as

Power Plant Model Elements -- Data for “Network Algebraic Equations” is same data as for power flow with some additional detail on load representation. -- Initial conditions for model states are determined from Pe, Q and Vterm values from solved power flow case. Copyright© 2006 General Electric International, Inc. 2 6/17/2021

Power Plant Model Elements Inputs Outputs Gen. Electrical Efd, angle, Vterm Iinj, Ifd Gen.

Power Plant Model Elements Inputs Outputs Gen. Electrical Efd, angle, Vterm Iinj, Ifd Gen. Mechanical Pm, Pe speed, angle Turbine valve/gate position (press. , head, etc) Pm (Flow) Governor speed, Pref (wref) valve/gate position Energy Source Pref, flow press. , head, etc. Excitation Sys. Vterm, Vref, Vsig , Ifd Efd PSS speed, Pe, etc. Vsig OEL/UEL Ifd Vsig, etc. Gen. Protection Ifd, Iterm, Vterm trip signal Network Vterm, Pe, Q Iinj Copyright© 2006 General Electric International, Inc. 3 6/17/2021

Generator Modeling • Modeling Options • genrou – Round (solid iron) rotor machines –

Generator Modeling • Modeling Options • genrou – Round (solid iron) rotor machines – 2 or 4 pole 2 equiv. rotor windings per axis; d and q axis saturation • gensal – Salient pole machines – low speed, many poles 2 windings in d axis; 1 winding in q axis; d axis saturation • gencls – “Classical” model – Constant voltage behind a reactance (Lppd) For aggregate equivalents only DON’T USE FOR REAL GENERATORS • gentpf – WSCC model similar to genrou Permits “subtransient saliency” (Lppd Lppq) • gencc – 2 generators modeled as one in load flow Same model as gentpf • gensdo – Same as gensal plus stator dc current DC current after fault (tpause) with decay (Tdc) • motor 1 – Induction generator/motor Copyright© 2006 General Electric International, Inc. 4 6/17/2021

Generator Modeling – mechanical model Included in all generator models. Copyright© 2006 General Electric

Generator Modeling – mechanical model Included in all generator models. Copyright© 2006 General Electric International, Inc. 5 6/17/2021

Generator Modeling – Electrical Model (genrou) Algebraic equations linking to network equations are not

Generator Modeling – Electrical Model (genrou) Algebraic equations linking to network equations are not shown. Copyright© 2006 General Electric International, Inc. 6 6/17/2021

Generator Modeling – Electrical Model (gensal) Copyright© 2006 General Electric International, Inc. 7 6/17/2021

Generator Modeling – Electrical Model (gensal) Copyright© 2006 General Electric International, Inc. 7 6/17/2021

Excitation System Types – Rotating exciters – DC exciters – Old IEEE – [exdc]1,

Excitation System Types – Rotating exciters – DC exciters – Old IEEE – [exdc]1, 2, c 2 a, c 4, ieeet 1 – New IEEE – [esdc] 1 a, 2 a, c 3 a, 4 b – AC exciters – Old IEEE – [exac]1, 1 a, c 2, 3, 3 a, 6 a, 8 b – New IEEE – [esac] 1 a, 2 a, 3 a, 4 a, 5 a, 6 a, 7 b, 8 b – Static exiters – Old IEEE – [exst]1, 2, 2 a, 3, 3 a, 4 b – New IEEE – [esst] 1 a, 2 a, 3 a, 4 b, 5 b, 6 b, 7 b – General purpose – texs, rexs, sexs – Special – exbbc, exeli Copyright© 2006 General Electric International, Inc. 8 6/17/2021

Excitation System Model Example – exdc 1 Vcomp = Vterm – (Rcomp + j

Excitation System Model Example – exdc 1 Vcomp = Vterm – (Rcomp + j Xcomp) * Iterm (same for all models) Vsig is signal from PSS model Copyright© 2006 General Electric International, Inc. 9 6/17/2021

Excitation System Model Example – exac 1 a Copyright© 2006 General Electric International, Inc.

Excitation System Model Example – exac 1 a Copyright© 2006 General Electric International, Inc. 10 6/17/2021

Excitation System Model Example – exst 4 b Copyright© 2006 General Electric International, Inc.

Excitation System Model Example – exst 4 b Copyright© 2006 General Electric International, Inc. 11 6/17/2021

Power System Stabilizer Models – PSS Models – ieeest – single input – pss

Power System Stabilizer Models – PSS Models – ieeest – single input – pss 2 a – dual input – psssb – dual input with voltage boost – wsccst – WSCC model – Example – pss 2 a Copyright© 2006 General Electric International, Inc. 12 6/17/2021

Hydro Turbine-Governor Model - hygov Copyright© 2006 General Electric International, Inc. 13 6/17/2021

Hydro Turbine-Governor Model - hygov Copyright© 2006 General Electric International, Inc. 13 6/17/2021

Steam Turbine-Governor Model – ieeeg 1 D Copyright© 2006 General Electric International, Inc. 14

Steam Turbine-Governor Model – ieeeg 1 D Copyright© 2006 General Electric International, Inc. 14 6/17/2021

Gas Turbine Model – ggov 1 Copyright© 2006 General Electric International, Inc. 15 6/17/2021

Gas Turbine Model – ggov 1 Copyright© 2006 General Electric International, Inc. 15 6/17/2021

Load Modeling – Composite load model Ongoing research by WECC LMTF • Members gathering

Load Modeling – Composite load model Ongoing research by WECC LMTF • Members gathering data • Aggregation by EPRI LOADSYN method • Validation by measurements and detailed Load models Substation System bus (230, 115, 69 -k. V) LTC Bss Bus Low-side bus Feeder. R, X. Bf 1 Bf 2 Discharge Lighting Copyright© 2006 General Electric International, Inc. M Motor A M Motor B M Motor C M Motor D Static 16 6/17/2021

PSLF – Sample Dynamic Data File # Netting data – convert small generators to

PSLF – Sample Dynamic Data File # Netting data – convert small generators to negative loads netting 60030 "BLACKFT " 161. 00 61850 "HEYBURN " 138. 00 61810 "MINIDOKA" 138. 00 60250 "MT HOME " 138. 00 61835 "WJOHN DY" 138. 00 60345 "TWINFALL" 138. 00 64106 "STILLWTR" 4. 16 64035 "DESRT PK" 13. 80 64098 "SODAPH 2 " 13. 80 73181 "SIDNEYDC" 230. 00 73188 "STEGALDC" 230. 00 10997 "LONEMS " 0. 57 76351 "RCDC W " 230. 00 70560 "LAMAR DC" 230. 00 62095 "INVRGGN 1" 34. 50 lodrep # Part of load at a bus to be modeled with a dynamic motor model motorw 14226 "SNTAROSA" 230. 00 "AP" : #9 mva=0. 0000 "pul" 0. 200000 "ls" 3. 6000 "lp" 0. 170000 "ra" 0. 006800 "tpo" 0. 530000 "h" 0. 500000 "d" 2. 0000 "vt" 0. 600000 "tv" 30. 0000 "tbkr" 0. 033330 "acc" 0. 600000 "lpp" 0. 170000 "tppo" 0. 0 "ndelt" 10. 0000 "wdelt" 0. 800000 motorw 14227 "SUNYSLOP" 230. 00 "AP" : #9 mva=0. 0000 "pul" 0. 200000 "ls" 3. 6000 "lp" 0. 170000 "ra" 0. 006800 "tpo" 0. 530000 "h" 0. 500000 "d" 2. 0000 "vt" 0. 600000 "tv" 30. 0000 "tbkr" 0. 033330 "acc" 0. 600000 "lpp" 0. 170000 "tppo" 0. 0 "ndelt" 10. 0000 "wdelt" 0. 800000 # Static load model for an entire area – constant Z, constant I, constant P(Q), frequency dependence alwscc 54001 "JUDY 515 S" 69. 00 "1 " : #9 "area" 54. 0000 "p 1" 0. 0 "q 1" 1. 000000 "p 2" 1. 000000 "q 2" 0. 0 "p 3" 0. 0 "q 3" 0. 0 "p 4" 0. 0 "q 4" 0. 0 "lpd" 1. 000000 "lqd" -1. 000000 # Static load model for a specific bus load blwscc 60010 "ADELAIDE" 138. 00 "1 " : #9 "tf" 0. 050000 "p 1" 0. 0 "q 1" 0. 0 "p 2" 0. 240000 "q 2" 0. 240000 "p 3" 0. 760000 "q 3" 0. 760000 "p 4" 0. 0 "q 4" 0. 0 "lpd" 1. 000000 "lqd" -1. 000000 # Composite load model cmpldw 54002 "MAYERTH 9" 138. 00 "99" : #3 mva=-0. 8 "Bss" 0. 2 "Rfdr" 0. 02 "Xfdr" 0. 1 "Fb" 0. / "xfmr" 1. "Xxf" 0. 12 "Tfix" 0. 97 "LTC" 0. "Tmin" 0. 9 "Tmax" 1. 1 "step" 0. 00625 / "Vmin" 1. 00 "Vmax" 1. 04 "Tdel" 30. "Ttap" 5. "Rcomp" 0. 01 "Xcomp" 0. 05 / "Fma" 0. 1 "Fmb" 0. 3 "Fmc" 0. 0 "Fmd" 0. 0 "Fdl" 0. 0 / "Pfs" 0. 9 "P 1 e" 2. "P 1 c" 0. 5 "P 2 e" 1. 6 "P 2 c" 0. 4 "Pfrq" 1. / "Q 1 e" 2. "Q 1 c" 0. 5 "Q 2 e" 4. 0 "Q 2 c" 0. 4 "Qfrq" -1. / "Mtp. A" 3. "Lfm. A" 0. 8 "Rs. A". 05 "Ls. A" 2. 0 "Lp. A" 0. 15 "Lpp. A" 0. 15 "Tpo. A" 0. 16 "Tppo. A" 0. 02 / "HA" 0. 2 "atrq. A" 1. 0 "btrq. A" 0. 0 "dtrq. A" 0. 0 "etrq. A" 0. 0 / "Vtr 1 A" 0. 6 "Ttr 1 A" 0. 12 "Ftr 1 A" 0. 5 "Vrc 1 A" 0. 8 "Trc 1 A" 0. 5 / "Vtr 2 A" 0. 4 "Ttr 2 A" 0. 02 "Ftr 2 A" 1. 0 "Vrc 2 A" 999. "Trc 2 A" 999. / "Mtp. B" 3. "Lfm. B" 0. 8 "Rs. B". 05 "Ls. B" 2. 0 "Lp. B" 0. 15 "Lpp. B" 0. 15 "Tpo. B" 0. 16 "Tppo. B" 0. 02 / "HB" 0. 2 "atrq. B" 0. 0 "btrq. B" 0. 0 "dtrq. B" 1. 0 "etrq. B" 1. 2 / "Vtr 1 B" 0. 6 "Ttr 1 B" 0. 12 "Ftr 1 B" 0. 5 "Vrc 1 B" 0. 8 "Trc 1 B" 0. 5 / "Vtr 2 B" 0. 4 "Ttr 2 B" 0. 02 "Ftr 2 B" 1. 0 "Vrc 2 B" 999. "Trc 2 B" 999. models gensal 54006 "DICKSON 9" 25. 00 "1 " : #9 mva=6. 0000 "tpdo" 6. 0000 "tppdo" 0. 0350 "tppqo" 0. 0350 "h" 3. 0000 "d" 0. 0000 "ld" 1. 4000 / "lq" 1. 0000 "lpd" 0. 2100 "lppd" 0. 1800 "ll" 0. 1200 "s 1" 0. 1700 "s 12" 0. 5500 "ra" 0. 0020 "rcomp" 0. 0000 "xcomp" 0. 0000 exdc 1 54006 "DICKSON 9" 25. 00 "1 " : #9 "tr" 0. 020000 "ka" 30. 0000 "ta" 0. 050000 "tb" 0. 500000 "tc" 0. 500000 "vrmax" 3. 5000 "vrmin" -3. 5000 "ke" -0. 170000 "te" 0. 950000 "kf" 0. 040000 / "tf 1" 1. 000000 "tf 2" 0. 0 "e 1" 3. 3700 "se 1" 0. 220000 "e 2" 4. 4900 "se 2" 0. 950000 ieeeg 3 54006 "DICKSON 9" 25. 00 "1 " : #9 mwcap=6. 2000 "tg" 0. 150000 "tp" 0. 050000 "uo" 0. 090889 "uc" -0. 090889 "pmax" 1. 000000 "pmin" 0. 027778 "rperm" 0. 040500 "rtemp" 0. 565000 "tr" 9. 5000 "tw" 0. 850000 / "kturb" 1. 000000 "aturb" -2. 0000 "bturb" 1. 000000 "spare" 0. 0 "db 1" 0. 0 "eps" 0. 0 "db 2" 0. 0 "gv 1" 0. 0 "pgv 1" 0. 0 "gv 2" 0. 0 / "pgv 2" 0. 0 "gv 3" 0. 0 "pgv 3" 0. 0 "gv 4" 0. 0 "pgv 4" 0. 0 "gv 5" 0. 0 "pgv 5" 0. 0 "gv 6" 0. 0 "pgv 6" 0. 0 Copyright© 2006 General Electric International, Inc. 17 6/17/2021