g2 phase study from GEANT simulation Qinzeng Peng

  • Slides: 24
Download presentation
g-2 phase study from GEANT simulation Qinzeng Peng Advisor: James Miller Boston University Sep

g-2 phase study from GEANT simulation Qinzeng Peng Advisor: James Miller Boston University Sep 28, 2004 Muon g-2 collaboration at BU: Lee Roberts, Rober Carey, Jon Paley, Xiaobo Huang Institutes: BU, BNL, UIUC, Univ. of Minnesota, Yale Univ. 1

Outline I. Brief introduction to g-2 II. Experimental set up and simulation III. Simulation

Outline I. Brief introduction to g-2 II. Experimental set up and simulation III. Simulation results and analysis 2

What is g-2? magnetic moment gyromagnetic ratio spin • Dirac equation predicts g=2 •

What is g-2? magnetic moment gyromagnetic ratio spin • Dirac equation predicts g=2 • in nature radiative correction makes g≠ 2 where aμ(SM) = aμ(QED) + aμ(hadronic) + aμ(weak) aμ(New Physics) = aμ(Measured) − aμ(SM) Studied Muon instead of Electron due to 3

Experimental Setup – Muon storage Polarization Momentum Protons (from AGS) Pions Inflector p=3. 1

Experimental Setup – Muon storage Polarization Momentum Protons (from AGS) Pions Inflector p=3. 1 Ge. V/c (1. 45 T) Target Injection orbit Ideal orbit • Muon polarization • Muon storage ring • injection & kicking • focus by Quadrupoles Kicker Storage Modules ring R=711. 2 cm d=9 cm Electric Quadrupoles 4

spin precession and muon decay DET • muons move in circle with constant speed

spin precession and muon decay DET • muons move in circle with constant speed • spin precession (Thomas + Larmor) • electrons decay mostly along the spin direction and boosted by Pmuon • fitting by 5 -parameter function to get N(t, E) = N 0(E)e-t/τ(1+A(E)Cos(ωat+Φ(E)) magic γ= 29. 3 5

Phase shift on ωa uncertainty What if φ is not a constant? Take an

Phase shift on ωa uncertainty What if φ is not a constant? Take an example: if And measuring time is about 600 μs, then 6

g 2 Geant simulation Hugh Brown Beam-line simulation Inflector • Muons generation • Spin

g 2 Geant simulation Hugh Brown Beam-line simulation Inflector • Muons generation • Spin polarization Jon Paley p≈3. 1 Ge. V/c g 2 Track • Inflection • Kicking • scraping Robert Carey g 2 GEANT Simulates nearly all geometric set up in the storage ring Ideal orbit DET 7

Beam-line / Calorimeter alignment Vert. in Beam Vert. on DET vertical Beam in the

Beam-line / Calorimeter alignment Vert. in Beam Vert. on DET vertical Beam in the ring Calorimeter Radial in Beam Radial on DET horizontal tdecay-tmeasure=drift time 8

Data selection l l l Energy cut : En >1. 8 Ge. V Detector

Data selection l l l Energy cut : En >1. 8 Ge. V Detector dependence : average over 24 detectors Drift time : offset of g-2 phase 9

Ф vs. detector vertical position Beam DET 3 cm ypc 1 • Symmetric about

Ф vs. detector vertical position Beam DET 3 cm ypc 1 • Symmetric about center • Energy dependent • ΔΦ big : -80 ~ +80 mrad • Φ(all) small : about 5 mrad • Φ change sign at 3 cm 10

outward and inward decay outward Φ < 0 inward Φ>0 dt longer dt shorter

outward and inward decay outward Φ < 0 inward Φ>0 dt longer dt shorter inward outward 3 cm 11

Ф vs. detector radial position • ΔΦ smaller, 30 mrad • Φ ≈0 on

Ф vs. detector radial position • ΔΦ smaller, 30 mrad • Φ ≈0 on outside • Φ >0 on detector 12

Ф vs. beam vertical/radial position • symmetric about center of beam • ΔΦ big

Ф vs. beam vertical/radial position • symmetric about center of beam • ΔΦ big • Φ ≈0 at center • ΔΦ smaller • Φ ≈0 on inside • Φ >0 13

Beam vertical shift • ΔΦ ≈0 • Φ is detector dependent, 4 groups ---

Beam vertical shift • ΔΦ ≈0 • Φ is detector dependent, 4 groups --- 4 Quads 14

Beam width change idea: change beam vertical distribution by a weighting factor Result :

Beam width change idea: change beam vertical distribution by a weighting factor Result : 1 percent width change / 0. 1 mrad phase shift 15

Beam upper cut – muon losses 9 cm • Muon losses: 1. 64% •

Beam upper cut – muon losses 9 cm • Muon losses: 1. 64% • ΔΦ = -0. 323 mrad 16

Detector gain shift 1. 05 E 0. 95 E E DET Vert. • very

Detector gain shift 1. 05 E 0. 95 E E DET Vert. • very small effect • 10% gain shift / ΔΦ = 0. 014 mrad 17

Beam / detector vertical alignment • 0. 9 mm/1. 0 mm shift • 0.

Beam / detector vertical alignment • 0. 9 mm/1. 0 mm shift • 0. 11%/1. 0% width change 18

CBO modulation l Betatron Oscillation l Coherent Betatron Oscillation l Combine 23 detectors in

CBO modulation l Betatron Oscillation l Coherent Betatron Oscillation l Combine 23 detectors in one CBO period Time = MOD ( time - DET# /24*Tcbo, Tcbo) 19

Sampling Tcbo=2. 4μs 20

Sampling Tcbo=2. 4μs 20

Combine 23 detectors CBO effect 21

Combine 23 detectors CBO effect 21

CBO modulation Number modulation Asymetry modulation, 0. 22% 22

CBO modulation Number modulation Asymetry modulation, 0. 22% 22

phase modulation, 0. 358 mrad dt modulation, 0. 175 mrad 23

phase modulation, 0. 358 mrad dt modulation, 0. 175 mrad 23

conclusions Simulation results consistent with Real data, like FSD studies. l Phase shift due

conclusions Simulation results consistent with Real data, like FSD studies. l Phase shift due to the geometric set up is a small effect on ωa. l CBO effect is a small effect. l 24