Future Nuclear Reactors Third and ThirdPlus Generation Reactors

  • Slides: 7
Download presentation
Future Nuclear Reactors Third and Third-Plus+ Generation Reactors http: //en. wikipedia. org/wiki/Generation_III_reactor Next Generation

Future Nuclear Reactors Third and Third-Plus+ Generation Reactors http: //en. wikipedia. org/wiki/Generation_III_reactor Next Generation is Simpler http: //coe. berkeley. edu/forefront/spring 2006/nuclear. html

Future Nuclear Reactors Fast Neutron Reactor http: //en. wikipedia. org/wiki/Fast-neutron_reactor

Future Nuclear Reactors Fast Neutron Reactor http: //en. wikipedia. org/wiki/Fast-neutron_reactor

Future Nuclear Reactors Fourth Generation Reactors http: //en. wikipedia. org/wiki/Generation_IV_reactor Gas-Cooled Fast Reactor (GFR)

Future Nuclear Reactors Fourth Generation Reactors http: //en. wikipedia. org/wiki/Generation_IV_reactor Gas-Cooled Fast Reactor (GFR) features a fast-neutron-spectrum, helium-cooled reactor and closed fuel cycle Molten Salt Reactor (MSR) produces fission power in a circulating molten salt fuel mixture with an epithermalspectrum reactor and a full actinide recycle fuel cycle. Sodium-Cooled Fast Reactor (SFR) features a fast-spectrum, sodium-cooled reactor and closed fuel cycle for efficient management of actinides and conversion of fertile uranium. Lead-Cooled Fast Reactor (LFR) features a fast-spectrum lead or lead/bismuth eutectic liquid metal-cooled reactor and a closed fuel cycle for efficient conversion of fertile uranium and management of actinides.

Future Nuclear Reactors Supercritical-Water-Cooled Reactor (SCWR) is a high-temperature, high-pressure water-cooled reactor that operates

Future Nuclear Reactors Supercritical-Water-Cooled Reactor (SCWR) is a high-temperature, high-pressure water-cooled reactor that operates above thermodynamic critical point of water (374 degrees Celsius, 22. 1 MPa, or 705 degrees Fahrenheit, 3208 psia). Very-High-Temperature Reactor (VHTR) a graphite-moderated, helium-cooled reactor with a once-through uranium fuel cycle, designed to supply heat with core outlet temperatures of 1, 000 degrees Celsius, which enables applications such as hydrogen production or process heat for the petrochemical industry or others. http: //is. gd/Yy. Revf Supercritical-Water-Cooled Reactor (SCWR) is a high-temperature, high-pressure water-cooled reactor that operates above thermodynamic critical point of water (374 degrees Celsius, 22. 1 MPa, or 705 degrees Fahrenheit, 3208 psia).

Future Nuclear Reactors Very-High-Temperature Reactor (VHTR) The Very-High-Temperature Reactor (VHTR) is a graphite-moderated, helium-cooled

Future Nuclear Reactors Very-High-Temperature Reactor (VHTR) The Very-High-Temperature Reactor (VHTR) is a graphite-moderated, helium-cooled reactor with a once-through uranium fuel cycle. The VHTR system is designed to be a high-efficiency system that can supply process heat to a broad spectrum of hightemperature and energy-intensive, nonelectric processes. The system may incorporate electricity generating equipment to meet cogeneration needs. The system also has the flexibility to adopt uranium/plutonium fuel cycles and offer enhanced waste minimization. Thus, the VHTR offers a broad range of process heat applications and an option for high-efficiency electricity production, while retaining the desirable safety characteristics offered by modular high-temperature gas cooled reactor Idaho Nuclear Laboratories

Future Nuclear Reactors NL team helps pave way to Generation IV reactor “Fourth generation

Future Nuclear Reactors NL team helps pave way to Generation IV reactor “Fourth generation nuclear reactors, the nuclear power plants of tomorrow, will provide safer, less expensive and more environmentally friendly energy. A critical step in developing new Very High Temperature Reactors (VHTR) is certifying the graphite that is used in many parts of the reactor's core. In recent years, it has become necessary to develop new nuclear-grade graphite and certify it for use in the next generation of gas-cooled nuclear reactors. . . nuclear experts envision two different versions of gas cooled VHTRs for nextgeneration use. Both designs will require large amounts of high-quality graphite. ”

Thorium Sites Thorium Energy Alliance 5. http: //www. thoriumenergyalliance. com/Thorium. Site/objectives. html Thorium Energy

Thorium Sites Thorium Energy Alliance 5. http: //www. thoriumenergyalliance. com/Thorium. Site/objectives. html Thorium Energy Alliance on Facebook http: //www. facebook. com/group. php? gid=110551728517&ref=ts Torium Energy Alliance Videos http: //is. gd/kn 5 g 8