Future Challenges in LongDistance Quantum Communication JianWei Pan

  • Slides: 24
Download presentation
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences

Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches Institut der Universität Heidelberg December 15, 2005

Quantum Superposition or Classical Physics: “bit” Quantum Physics: + “qubit” Entanglement: + Quantum foundations:

Quantum Superposition or Classical Physics: “bit” Quantum Physics: + “qubit” Entanglement: + Quantum foundations: Bell’s inequality, quantum nonlocality… Quantum information processing: quantum communication, quantum computation, high precision measurement etc …

Why Quantum Communication? When information is encoded in quantum states one may outperform classical

Why Quantum Communication? When information is encoded in quantum states one may outperform classical communication systems in terms of • absolute security • efficiency • channel capacity Because quantum information systems allow encoding information by means of coherent superposition of quantum states.

Qubits: Polarization of Single Photons One bit of information per photon (encoded in polarization)

Qubits: Polarization of Single Photons One bit of information per photon (encoded in polarization) Qubit: Non-cloning theorem: An unknown quantum state can not be copied precisely!

Polarization Entangled Photon Pair 1 -2 Bell states – maximally entangled states: Singlet: where

Polarization Entangled Photon Pair 1 -2 Bell states – maximally entangled states: Singlet: where 45 -degree polarization

Quantum Cryptographic Key Distribution • Single-particle-based secret key distribution: [C. H. Bennett & G.

Quantum Cryptographic Key Distribution • Single-particle-based secret key distribution: [C. H. Bennett & G. Brassard, BB 84 protocol (1984) ] • Entanglement-based secret key distribution: [A. Ekert, Phys. Rev. Lett. 67, 661 (1991). ]

Quantum Teleportation Initial state where The shared entangled pair [C. H. Bennett et al.

Quantum Teleportation Initial state where The shared entangled pair [C. H. Bennett et al. , Phys. Rev. Lett. 73, 3801 (1993)]

Entanglement Swapping [M. Zukowski et al. , Phys. Rev. Lett. 71, 4287 (1993)]

Entanglement Swapping [M. Zukowski et al. , Phys. Rev. Lett. 71, 4287 (1993)]

Key Distribution with Single Photons [C. Kurtsiefer et al. , Nature 419, 450 (2002)]

Key Distribution with Single Photons [C. Kurtsiefer et al. , Nature 419, 450 (2002)] achieved distance: 100 km fiber-based (Toshiba Research Europe) 23 km free-space (TU Munich)

Generation of Photonic Entanglement [P. G. Kwiat et al. , Phys. Rev. Lett. 75,

Generation of Photonic Entanglement [P. G. Kwiat et al. , Phys. Rev. Lett. 75, 4337 (1995). ]

Key Distribution with Entangled Photons Fibre: [T. Jennewein et al. , Phys. Rev. Lett.

Key Distribution with Entangled Photons Fibre: [T. Jennewein et al. , Phys. Rev. Lett. 84, 4729 (2000). ] [D. S. Naik, et al. , Phys. Rev. Lett. 84, 4733 (2000). ] [W. Tittel et al. , Phys. Rev. Lett. 84, 4737 (2000). ] Free-space: [M. Aspelmeyer et al. , Science 301, 621 (2003). ] achieved distance: 1 km for both fibre-based and free-space

Experimental Quantum Teleportation The setup The result Teleportation: [D. Bouwmeester & J. -W. Pan

Experimental Quantum Teleportation The setup The result Teleportation: [D. Bouwmeester & J. -W. Pan et al. , Nature 390, 575 (1997)] Entanglement Swapping: [J. -W. Pan et al. , Phys. Rev. Lett. 80, 3891 (1998)]

Our dream: achieving long-distance quantum communication!

Our dream: achieving long-distance quantum communication!

Difficulties in Long-Distance Quantum Communication However, due to the noisy quantum channel (1) absorption

Difficulties in Long-Distance Quantum Communication However, due to the noisy quantum channel (1) absorption photon loss (2) decoherence degrading entanglement quality Free-Space Distribution of Entangled Photons

Free-Space Distribution of Entangled Photons over 13 km [C. -Z. Peng et al. ,

Free-Space Distribution of Entangled Photons over 13 km [C. -Z. Peng et al. , Phys. Rev. Lett. 94, 150501 (2005)] Free-space entanglement distribution - we are working on 20 km and 500 km scale…

Another Solution to Photon Loss and Decoherence Entanglement swapping: solution to photon loss: [N.

Another Solution to Photon Loss and Decoherence Entanglement swapping: solution to photon loss: [N. Gisin et al. , Rev. Mod. Phys. 74, 145 (2002)] Entanglement purification: solution to decoherence [C. H. Bennett et al. , Phys. Rev. Lett. 76, 722 (1996)] [D. Deutsch et al. , Phys. Rev. Lett. 77, 2818 (1996)]

Generating Entangled States over Long-Distance Quantum repeaters: [H. Briegel et al. , Phys. Rev.

Generating Entangled States over Long-Distance Quantum repeaters: [H. Briegel et al. , Phys. Rev. Lett. 81, 5932(1998)] Require • entanglement swapping with high precision • entanglement purification with high precision • quantum memory

Experimental Entanglement Purification and Swapping Before purification, F=3/4 After purification, F=13/14 [J. -W. Pan

Experimental Entanglement Purification and Swapping Before purification, F=3/4 After purification, F=13/14 [J. -W. Pan et al. , Nature 410, 1067 (2001)] [J. -W. Pan et al. , Nature 421, 721 (2003)] [J. -W. Pan et al. , Nature 423, 417

Drawback in Former Experiments • Probabilistic entangled photon source • Probabilistic entanglement purification •

Drawback in Former Experiments • Probabilistic entangled photon source • Probabilistic entanglement purification • Bad weather Quantum memory • In N -stage realization, the cost of resource is proportional to • With the help of quantum memory, the total cost is then

Solution with Atomic Ensembles Storage of light in atomic ensembles [C. Liu et al.

Solution with Atomic Ensembles Storage of light in atomic ensembles [C. Liu et al. , Nature 409, 490 (2001)] [D. F. Phillips et al. , Phys. Rev. Lett. 86, 783 (2001)] motivate Storage of single-photon states in atomic ensembles [L. -M. Duan et al. , Nature 414, 413 (2001)]

Entanglement Generation Maximally entangled in the number basis!

Entanglement Generation Maximally entangled in the number basis!

Entanglement Connection Steps: 1. Apply a reverse read laser pulse to transfer 2. atomic

Entanglement Connection Steps: 1. Apply a reverse read laser pulse to transfer 2. atomic excitation to optical exc. 3. 2. Succeeds if D 1 or D 2 registers one photon 4. 3. Fails otherwise, and repeat every step from entanglement generation

The most recent experiment results Observation of Stokes and anti-Stokes photon • Harvard: M.

The most recent experiment results Observation of Stokes and anti-Stokes photon • Harvard: M. D. Lukin… [C. H. Van der Wal et al. , Science 301, 196 (2003)] • Caltech: H. J. Kimble… [A. Kuzmich et al. , Nature 423, 731 (2003)] • Gatech: A. Kuzmich… [D. N. Matsukevich et al. , Science 306, 663 (2004)] • Heidelberg: J. -W. Pan … long-life time quantum memory [S. Chen et al. , in preparation for Phys. Rev. Lett. ] working on a phase insensitive scheme… Synchronization of two independent lasers • USTC: J. -W. Pan, J. Zhang and Z. -Y. Wei … [T. Yang et al. , submitted to Phys. Rev. Lett. (2005)]

|Atoms> + |Photons> Powerful Quantum Superposition Promising Long-Distance Quantum Communication

|Atoms> + |Photons> Powerful Quantum Superposition Promising Long-Distance Quantum Communication