FRACTURE MECHANICS n CRACK n FRACTURE n MECHANICS

  • Slides: 16
Download presentation
FRACTURE MECHANICS n CRACK ? ? n FRACTURE ? ? ? n MECHANICS OF

FRACTURE MECHANICS n CRACK ? ? n FRACTURE ? ? ? n MECHANICS OF MATERIAL/STRENGTH OF MATERIAL ? ?

ASSUMPTION n HOMOGEN n CONTINUE n ISOTROPI

ASSUMPTION n HOMOGEN n CONTINUE n ISOTROPI

CASES Ø 1800 – 1870 : Accidents were caused by Fractures of wheel, axle,

CASES Ø 1800 – 1870 : Accidents were caused by Fractures of wheel, axle, rails (Great Britain). Ø 19 th March 1830 : Montrose Suspension Bridge. Main chain gave way 700 persons killed. Ø 22 nd January 1866 : A portion of roof of the Manchester railway station fell. 2 men death. Caused by failure of cast iron struts connected. Ø 13 th December 1898 : The failure of a large gas tank in New York. Ø 3 th January 1913 : A high pressure water burst at Boston flooded the district Ø February 1866 : Boiler explosions Ø Most of serious railway accidents POOR DESIGN

Fracture mechanics n LINEAR ELASTIC FRACTURE MECHANICS (LEFM) * BEBAN ELASTIS == FATIGUE n

Fracture mechanics n LINEAR ELASTIC FRACTURE MECHANICS (LEFM) * BEBAN ELASTIS == FATIGUE n ELASTIC PLASTIC FRACTURE MECHANICS * BEBAN PLASTIS

STRESS CONCENTRATION FACTOR (Kt) RADIUS OF FILLET n r/D<<< = Kt >>> n Notch

STRESS CONCENTRATION FACTOR (Kt) RADIUS OF FILLET n r/D<<< = Kt >>> n Notch stress (σnotch)>>> n σnotch = Kt x σunnotch/ σn Bagaimana kalau r ~ 0, D = constant r/D = 0/D ~ infinite = crack/retak Crack # notch/hole Kt = faktor pengendali konstruksi yang ada notch n

SOURCES OF STRESS CONCENTRATED n n IMPURITY, VACANCY, DISLOCATION, GRAIN BOUNDARY ROUGHNESS OF SURFACE

SOURCES OF STRESS CONCENTRATED n n IMPURITY, VACANCY, DISLOCATION, GRAIN BOUNDARY ROUGHNESS OF SURFACE WELD DEFECT HOLE FOR RIVET, BOLT “DON’T CONSIDER TO AVOID FRACTURE”, BUT CONSIDER “TO CONTROL FRACTURE” IN DESIGN, MANUFACTURING, MAINTENANCE AND REPAIR.

What is CRACK? ? Notch yang r ~ 0 n Alat kontrolnya bukan lagi

What is CRACK? ? Notch yang r ~ 0 n Alat kontrolnya bukan lagi Kt n K 1 , K 2 atau K 3 (factor intensitas tegangan/ stress intensity factor) n K = MODUS I , tension n K = modus II, sliding n I II n KIII = modus III, tearing

Expected highest service load Crack size Residual strength Design strength Expected highest service load

Expected highest service load Crack size Residual strength Design strength Expected highest service load Normal sevice load Failure may occure failure Cycles/time Crack size, time

FRACTURE/PATAH AWAL RETAK/CRACK INITIATION n CRACK PROPAGATION n FINAL FRACTURE n

FRACTURE/PATAH AWAL RETAK/CRACK INITIATION n CRACK PROPAGATION n FINAL FRACTURE n

Others 23 % Static fracture 13% corrosion burst 3% SCC 5% CORROSIO FATIGUE ROLLING

Others 23 % Static fracture 13% corrosion burst 3% SCC 5% CORROSIO FATIGUE ROLLING CONTACT FATIGUE TOTAL 242 SIMPLE FATIGUE 58% 77% FATIGUE 11 % Others 10 Thermal Fatigue 8% Cast 15 Gear Wire rope 8 18 Pulley, roll 90 % Welded part Stress concentratio 242 28 Bolt 32 Key, atc 56 77

MODE OF FRACTURE Mixed Mode I & III

MODE OF FRACTURE Mixed Mode I & III

FRACTURE MECHANICS PARAMETERS σy K = σ vπ. a f (a/w) K = stress

FRACTURE MECHANICS PARAMETERS σy K = σ vπ. a f (a/w) K = stress insity factor a = crack size f(a/w) = shape factor

Fracture toghness Kc is fracture toughness value/ nilai ketangguhan retak n K ~ Kc

Fracture toghness Kc is fracture toughness value/ nilai ketangguhan retak n K ~ Kc === patah/fracture n K < Kc == crack propagation/menuju patah a ~ ac (critical size) patah Δ K = K max –K min K max = σ max V π. a f (a/w) K min = σ min V π. a f (a/w) n

da/d. N III Unstable I. Crack initiation II II. Propagation III. Final/static fracture Stable

da/d. N III Unstable I. Crack initiation II II. Propagation III. Final/static fracture Stable crack I Δ Kth K Kc properties Fracture toughness value ΔK

Crack propagation (da/d. N n PARIS LAW da/d. N = C (Δ K)m Δ

Crack propagation (da/d. N n PARIS LAW da/d. N = C (Δ K)m Δ K = stress intensity range C , m = the material constant Δ K = K max – K min

CRACK PROPAGATION P da/d. N (log scale) ΔP 1>ΔP 2>ΔP 3 a ΔP 3

CRACK PROPAGATION P da/d. N (log scale) ΔP 1>ΔP 2>ΔP 3 a ΔP 3 ΔP 2 ΔP 1 b da/d. N = C (ΔK)m t a da d. N N(cycles) ΔK = Δσ (πa)^1/2 f(a) P R=0 R = -1 P max + - ΔP P min t(time) ΔK (log scale)