Fouriertransform microwave and millimeterwave spectroscopy of CH 2

  • Slides: 21
Download presentation
Fourier–transform microwave and millimeter–wave spectroscopy of CH 2 IBr (v = 0) Stéphane Bailleux

Fourier–transform microwave and millimeter–wave spectroscopy of CH 2 IBr (v = 0) Stéphane Bailleux stephane. bailleux@univ-lille 1. fr University of Lille June 17, 2014 – 69 th ISMS Meeting

Spectroscopy of CH 2 XY species n X , Y = { F, Cl,

Spectroscopy of CH 2 XY species n X , Y = { F, Cl, Br } : extensive studies n X = I CH 2 I 2 : Z. K i s i e l e t a l. (1996) CH 2 IF : C. Puzzarini e t a l. (2011) CH 2 ICl : S. Bailleux e t a l. (2011) CH 2 IBr : this work

Atmospheric chemistry of iodine A. Saiz–Lopez et al. Chem. Review. 2011 Aerosol OIO IO

Atmospheric chemistry of iodine A. Saiz–Lopez et al. Chem. Review. 2011 Aerosol OIO IO - – – ℎn I, I 2, IO 2: detected IX O 3 loss I 2, CH 2 IX, CH 3 I, … I

Source of atmospheric iodine S. Archer et al. J. Geophys. Res. 2006 CH 2

Source of atmospheric iodine S. Archer et al. J. Geophys. Res. 2006 CH 2 IBr : 5% CH 3 I 23% C 2 H 5 I : 6% CH 2 ICl CH 2 I 2 22% 44% di-halogenated species are much more photolabile

C ongested rotational spectra ! n Complex hyperfine structure (quadrupole): IBr = 3/2 ⇒

C ongested rotational spectra ! n Complex hyperfine structure (quadrupole): IBr = 3/2 ⇒ 24 hyperfine levels I I = 5/2 n quadrupolar and rotational constants : similar magnitudes n small rotational constants and low frequency ICBr bending vibrational mode n 2 Br isotopologues : 79 Br : 81 Br = 1 : 1

High level quantum chemical calculations n Rotational constants (MP 2) n Centrifugal distortion constants,

High level quantum chemical calculations n Rotational constants (MP 2) n Centrifugal distortion constants, up to sextic (B 3 LYP) n Quadrupolar coupling constants cij (a = I, Br) cij (a) = e. Qa /h qij(a) He. Qq(a) = - ⅙ QI, Br : ∇EI, Br n Dipole moments (D) µa = 0. 09 µb = 1. 54 b a data not available in the literature Cs symetry k = -0. 998

Predicted microwave spectra (b–type) search candidates MHz

Predicted microwave spectra (b–type) search candidates MHz

Predicted microwave spectra 23000 23500 24000 24500 25000 25500 26000

Predicted microwave spectra 23000 23500 24000 24500 25000 25500 26000

Predicted microwave spectra low N, Q-branch transitions 23000 23500 24000 111 -000 24500 25000

Predicted microwave spectra low N, Q-branch transitions 23000 23500 24000 111 -000 24500 25000 25500 26000

1 1 1 – 0 0 0 transition assigned Predicted (B 3 LYP) Observed

1 1 1 – 0 0 0 transition assigned Predicted (B 3 LYP) Observed

111 – 000 transition after fitting A, B, C and N. Q. C. C.

111 – 000 transition after fitting A, B, C and N. Q. C. C. determined

Assignments of Q-branches CH 2 I 79 Br CH 2 I 81 Br

Assignments of Q-branches CH 2 I 79 Br CH 2 I 81 Br

Examples of spectra CH 2 I 81 Br NKa. Kc = 111 – 000

Examples of spectra CH 2 I 81 Br NKa. Kc = 111 – 000 F 1 = J + IBr F 1 = F 1 + I I

Results assigned (J 132 Ka 14) µw ( 23 – 25 GHz) : µb

Results assigned (J 132 Ka 14) µw ( 23 – 25 GHz) : µb mmw (120 – 243 GHz) : µa mmw (200 – 243 GHz): µb 79 Br 81 Br 428 439 0021 0441 0519

Constants (MHz) of CH 2 I 79 Br observed Rotation A B C Iodine

Constants (MHz) of CH 2 I 79 Br observed Rotation A B C Iodine Coupling caa cbb |cab| r 0 structure 0024054. 8910 0000892. 3920 0000865. 0090 MP 2 6– 311+G 26687 00895 00867 electronic structure – 1275. 31 00236. 38 01296. 20 – 1300 00263 01278 0304. 38 00+4. 35 0418. 01 00315 000– 7 00414 Bromine Coupling caa cbb |cab|

Geometry CH 2 IF re CH 2 ICl r 0 CH 2 I 79

Geometry CH 2 IF re CH 2 ICl r 0 CH 2 I 79 Br r 0 CH 2 I 2 rz C – I /Å 2. 1410 2. 1485 2. 1434 C–X /Å 1. 3584 1. 7541 1. 9147 C–H /Å 1. 0841 1. 0832 1. 0817 fixed 1. 085 HCH / ° 112. 45 107. 93 107. 86 111. 27 ICX / ° 110. 79 113. 03 113. 47 114. 0(3) XCH / ° 109. 95 112. 16 111. 80 2. 134(2)

Concluding remarks n Organic iodine in the atmosphere: q ozone depletion q impact on

Concluding remarks n Organic iodine in the atmosphere: q ozone depletion q impact on the radiative balance n our data (hopefully) … q will prompt vibrational spectroscopic studies q give the potential for atmospheric monitoring

Contributors Measurement & analysis n Toho University (MMW) K. Taniguchi Computations n Kean University

Contributors Measurement & analysis n Toho University (MMW) K. Taniguchi Computations n Kean University W. Bailey S. Sakai H. Ozeki n Shizuoka University (FTMW) T. Okabayashi n acknowledgements French National Research Agency n Lille University D. Duflot

Centrifugal distortion of CH 2 I 79 Br quartic (k. Hz) DJK DKJ 103

Centrifugal distortion of CH 2 I 79 Br quartic (k. Hz) DJK DKJ 103 d 1 20000000 103 d 2 20000000 sextic (m. Hz) observed MP 2 SDB-VTZ 000. 1336491 (37) – 8. 82364 (11)0 374. 083 (12) 0001 – 7. 12740 (55) 0 – 0. 09268 (24) 0 0. 123 – 8. 6100 374. 0001 – 6. 4300 0 – 0. 0753 HJK 000. 03082 (13) HJK 001. 027 (11)00 HKJ 0– 544. 3 (16) 00000 HKJ 20008. (204) 00000 103 h 1 20000000 04. 567 (32) 103 h 2 20000000 00. 146 (25) 103 h 3 20000000. 01155 fixed 00. 0283 000. 71300 0– 498. 0000000 19700. 000000 3. 9800 00. 126 000. 0105 0

Quadrupolar tensors of CH 2 I 79 Br cxx cyy czz 7 9 Br

Quadrupolar tensors of CH 2 I 79 Br cxx cyy czz 7 9 Br I / MHz – 289. 7496 (49) 981. 0133 (39) / MHz – 308. 7330 (17) 1038. 9290 (18) / MHz 598. 4826 (49) – 2019. 9423 (39) h 0. 03170 0. 0287 qza / °Hz 35. 13000 29. 88000

Millimeter-wave spectrometer (Toho)

Millimeter-wave spectrometer (Toho)