FOURIER TRANSFORM: • Definition of the Fourier transforms • Relationship between Laplace Transforms and Fourier Transforms • Fourier transforms in the limit • Properties of the Fourier Transforms • Circuit applications using Fourier Transforms • Parseval’s theorem • Energy calculation in magnitude spectrum
Definition of Fourier Transforms:
Inverse Fourier Transforms:
Example 1: Obtain the Fourier Transform for the function below:
Solution: Given function is:
Fourier Transforms:
FOURIER TRANSFORM: • Definition of the Fourier transforms • Relationship between Laplace Transforms and Fourier Transforms • Fourier transforms in the limit • Properties of the Fourier Transforms • Circuit applications using Fourier Transforms • Parseval’s theorem • Energy calculation in magnitude spectrum
Relationship between Fourier Transforms and Laplace Transforms There are 3 rules apply to the use of Laplace transforms to find Fourier Transforms of such functions.
Rule 1: If f(t)=0 for t<=0 • Replace s=jω
Example:
Replace s=jω
Rule 2: Inverse negative function
Example: Negative
Fourier Transforms
Rule 3: Add the positive and negative function
Thus,
Example 1:
Fourier transforms:
Example 2: Obtain the Fourier Transforms for the function below:
Solution:
Example 3:
Solution:
Example 4:
Solution:
FOURIER TRANSFORM: • Definition of the Fourier transforms • Relationship between Laplace Transforms and Fourier Transforms • Fourier transforms in the limit • Properties of the Fourier Transforms • Circuit applications using Fourier Transforms • Parseval’s theorem • Energy calculation in magnitude spectrum
Fourier Transforms in the limit • Fourier transform for signum function (sgn(t))
assume ε→ 0,
• Fourier Transforms for step function:
• Fourier Transforms for cosine function
Thus,
FOURIER TRANSFORM: • Definition of the Fourier transforms • Relationship between Laplace Transforms and Fourier Transforms • Fourier transforms in the limit • Properties of the Fourier Transforms • Circuit applications using Fourier Transforms • Parseval’s theorem • Energy calculation in magnitude spectrum
Properties of Fourier Transforms • Multiplication by a constant
• Addition and subtraction
• Differentiation
• Integration
• Scaling
• Time shift
• Frequency shift
• Modulation
• Convolution in time domain
• Convolution in frequency domain:
Example 1: • Determine the inverse Fourier Transforms for the function below: