FORWARD BRIDGE TYPE SINGLE SWITCH HALF BRIDGE TWO
开关电源拓扑技术 FORWARD BRIDGE TYPE SINGLE SWITCH HALF BRIDGE TWO SWITCH INTERLEAVED FULL BRIDGE FB ZVS RESONANT 硬开关和软开关的I-V轨迹 © 2019 Vicor 5
交错并联PFC (Interleaving) reduced input-current ripple DM filter can be eliminated reduced output current ripple bulk capacitor size can be reduced distributed magnetics improved thermal management 6
单级高频化光伏逆变器(DC-AC) 200 – 500 Vdc 208 or 240 Vac Ø Wide input voltage range Line frequency Ø Only one high frequency power processing stage • Boost or buck Ref. : Zheng Zhao, Ming Xu, Qiaoliang Chen, etc. “Derivation, Analysis, and Implementation of a Boost–Buck Converter-Based High-Efficiency PV Inverter”. IEEE Trans. on Power electronics, Volume: 27, Issue: 3, 2012 7
单级高频化光伏逆变器(DC-AC) Boost mode: VPV < Vo(t) Buck mode: VPV > Vo(t) 8
Refusol 光伏逆变器 (三相 20 k. W) Va VPV /2 Buck 0 Sa 1 Sa 3 & S 1 Sa 6 Always high 9
Refusol 光伏逆变器 (三相 20 k. W) VPV /2 Boost Mode Va 0 Sa 1 Sa 3 & S 1 Sa 6 Always high 10
器件关键参数对比 ���目 ��条件 1) VGSTH 2) RDSON 导通电阻 3) BVDSS 击穿电压 4) Qg 栅极电荷 5) IAS 雪崩电流 [V] [Ω] [V] [ n. C ] [A] ID = 250. 1μA VGS=10 V ID = 250. 1μA VGS = 10. 01 V ID=2 A(SJ)/ID=4 A(P) ID = 2. 000 A �注 L=500μH LSX 65 R 930 GT 4. 0 0. 80 718 13. 6 6. 5 超�� L 3 LSX 65 R 950 HT 3. 6 0. 86 680 7. 6 9. 5 超�� L 4 LND 4 N 65 2. 8 2. 3 706 11. 6 13 高�平面 SVF 4 N 65 2. 9 2. 5 705 11. 1 15 高�平面 12 12
VD MOSFET芯片结构
器件关键参数对比 器件型号 ��等� (V) �通�阻 Typ. RDSon (Ω) ���荷 Qg (n. C) ��荷 Qgs (n. C) ��荷 Qgd (n. C) XXX 65 R 600 CX 650 0. 54 23 2. 75 12 XXX 65 R 380 CX 650 0. 34 39 4 20 XXX 65 R 280 CX 650 0. 25 45 5 24 XXX 65 R 190 CX 650 0. 17 73 8. 9 38 XXX 65 R 099 CX 650 0. 089 127 15 65 XXX 65 R 070 CX 650 0. 063 170 20 85 XXX 65 R 037 CX 650 0. 033 330 40 170 © 2019 Vicor 14
功率MOSFET损耗品质因数Figure of merit(FOM) Yucheng Ying, Device selection Criteria Based on Loss Modeling and Figure of Merit, CPES,
传统VD MOS 和SJ MOS的剖面图对比 传统VD MOSFET Gate Source n+ p+ n epi Super Junction MOSFET Gate Source n+ p+ p Source n+ p+ n epi p n+ sub Drain Standard MOSFET Drain SJ MOSFET 19
Rdson x Achip [W*mm 2] 特征导通电阻Rsp(=RDSon*Achip)对比 VD MOSFET Ron x A ~ V(BR)DSS 2. 5 Si普通VDMOS极限 超结 MOS Ron x A ~ V(BR)DSS 1. 17 电压 MOSFET的特征电阻Rsp与击穿电压BVDSS的关系 20
Super-junction MOSFET技术路径 R DS(on) x Achip (mohm· cm 2) 600 V平台 30 25 L 1 Cool. MOS C 6 20 15 L 2 L 3 15 L 4 Cool. MOS C 7 10 Trench Gate降低Rsp L 5 12. 5 5 11 9 0 2013 2014 2015 2016 2017 9 2018 2019
高压硅基MOSFET技术参数迭代 器件型号 ��等� (V) �通�阻 Typ. RDSon (Ω) ���荷 Qg (n. C) ��荷 Qgs (n. C) ��荷 Qgd (n. C) FQA 24 N 60 600 0. 18 110 25 53 SPX 20 N 60 C 3 600 0. 16 87 11 33 IPX 60 R 190 C 6 600 0. 17 63 7. 6 32 IPX 60 R 199 CP 600 0. 18 32 8 11 IPX 60 R 180 C 7 600 0. 155 24 5 8 IPX 60 R 180 P 7 600 0. 145 25 6 8 © 2019 Vicor 22
FOM(=Qg*RDS(on))对比(VDMOS Vs. SJ MOS) 40 38 Rdson*Qg (Ω*n. C) 35 30 25 22 20 15 10 10 5 0 VD MOSFET 1 11 A/600 V VD MOSFET 2 11 A/600 V ****12 N 60 Qg=42 n. C Rdson=0. 55Ω QFET ****12 N 60 Qg=26 n. C Rdson=0. 53Ω Uni. FET SJ MOSFET 11 A/600 V LSD 11 N 60 Qg=28 n. C Rdson=0. 30Ω Super Junction 23
FOM(=Qg*RDS(on))对比(SJ MOSFETs) 18 16. 53 16 Rdson*Qg (Ω*n. C) 14 11. 97 12 10 8 6. 368 6 4. 32 4 2 0. 374 0 Gen 1 C 3 Cool. MOS 600 V/0. 19Ω Gen 2 C 6 Cool. MOS 600 V/0. 19Ω Gen 2. 5 CP Cool. MOS 600 V/0. 199Ω Gen 3 C 7 Cool. MOS 600 V/0. 18Ω Ga. NMOSFET HEMTs Ga. N 600 V/0. 22Ω 24
高压MOSFET特性对比 C 3 C 7 平面VD MOSFET Super Junction MOSFET 开关过程对比(相同Rdson) 25
低压MOSFET技术演变及特性 SGT - Shielded Gate Trench © 2019 Vicor 26
低压硅基MOSFET技术参数迭代(40 V) �通�阻 Typ. �通�阻 RDSon Max. RDSon (mΩ) ��条件 ���荷 Qg (n. C) ��荷 Qgs (n. C) ��荷 Qgd (n. C) ��条件 2. 2 VGS = 10 V, ID = 80 A 345 49 74 VDS = 20 V, ID = 80 A, VGS = 10 V 2 2. 5 VGS = 10 V, ID = 100 A 90 23 32 VDS = 20 V, ID = 100 A, VGS = 10 V 40 1. 9 2. 3 VGS = 10 V, ID = 90 A 90 35 11 VDS = 20 V, ID = 30 A, VGS = 10 V BSZ 025 N 04 LS 40 2 2. 5 VGS = 10 V, ID = 20 A 37 6. 3 6 VDS = 20 V, ID = 20 A, VGS = 10 V BSZ 024 N 04 LS 6 40 2. 1 2. 4 VGS = 10 V, ID = 20 A 25 4. 7 3. 2 VDS = 20 V, ID = 20 A, VGS = 10 V 器件�型 器件型号 ��等� (V) Trench MOSFET FDP 8440 40 1. 64 Trench MOSFET IRFB 7440 Pb. F 40 Optimos 3 IPB 023 N 04 N Optimos 5 Optimos 6 © 2019 Vicor 28
低压硅基MOSFET技术参数迭代(100 V) �通�阻 Typ. �通�阻 Max. RDSon (mΩ) ��条件 ���荷 Qg (n. C) 8 VGS = 10 V, ID = 95 A 211 26 74 VDS = 50 V, ID = 75 A, VGS = 10 V 7. 2 9 VGS = 10 V, ID = 58 A 83 19 27 VDS = 50 V, ID = 58 A, VGS = 10 V 100 6. 6 7. 9 VGS = 10 V, ID = 50 A 66 22 15 VDS = 50 V, ID = 50 A, VGS = 10 V IPB 083 N 10 N 3 100 7. 2 8. 3 VGS = 10 V, ID = 73 A 42 15 8 VDS = 50 V, ID = 73 A, VGS = 10 V IPP 083 N 10 N 5 100 7. 3 8. 3 VGS = 10 V, ID = 73 A 30 11 6. 5 VDS = 50 V, ID = 73 A, VGS = 10 V 器件�型 器件型号 ��等� (V) Trench MOSFET HUF 75652 G 3 100 6. 7 Trench MOSFET IRFB 4410 ZPb. F 100 Optimos 2 BSC 079 N 10 NS Optimos 3 Optimos 5 ��荷 Qgs ��荷 Qgd (n. C) ��条件 © 2019 Vicor 29
宽禁带器件 Ref: ST_Breakthrough in Power Electronic Si. C MOSFET & Ga. N HEMT 30
Si. C MOSFETs © 2019 Vicor 31
高压Si/Si. C基MOSFET技术参数迭代 600 V/650 V 器件�型 器件型号 ��等� (V) Si MOSFET IXFR 48 N 60 P 600 �通�阻 Typ. Max. RDSon (Ω) ��条件 开启�� ���荷 ��荷 Qgs Vth Qg Qgd (n. C) (V) (n. C) ��条件 体二极管�降 VF (V) ��条件 反向恢复 �� trr �荷 trr �流 Irrm (ns) (u. C) (A) ��条件 0. 15 VGS = 10 V, ID = 24 A 4 150 50 50 VDS = 300 V, ID = 24 A, VGS = 10 V 1. 5 IF =32 A 200 0. 8 6 IF =20 A, VR = 480 V, di/dt = 100 A/μs Si SJ MOSFET IPX 65 R 150 CFD 2 650 0. 135 0. 15 VGS = 10 V, ID = 9. 3 A 4 86 15 47 VDS = 480 V, ID = 14 A, VGS = 10 V 0. 9 IF =14 A 140 0. 7 8. 8 IF =14 A, VR = 400 V, di/dt = 100 A/μs Si SJ MOSFET IPX 60 R 145 CFD 7 600 0. 127 0. 145 VGS = 10 V, ID = 6. 8 A 4 31 8 10 VDS = 400 V, ID = 7. 3 A, VGS = 10 V 1 IF =6. 8 A 102 0. 45 8 IF =7. 3 A, VR = 400 V, di/dt = 100 A/μs Si. C MOSFET SCT 2120 AF 650 0. 12 0. 156 VGS = 18 V, ID = 10 A 2. 8 61 14 21 VDS = 300 V, ID = 10 A, VGS = 18 V 4. 3 IF = 10 A 33 0. 053 3 IF = 10 A, VR = 400 V, di/dt = 160 A/μs Si. C MOSFET SCT 3120 AL 650 0. 12 0. 156 VGS = 18 V, ID = 6. 7 A 4. 1 38 11 13 VDS = 300 V, ID = 6. 7 A, VGS = 18 V 3. 2 IF = 6. 7 A 13 0. 035 6 IF = 6. 7 A, VR = 300 V, di/dt = 1100 A/μs © 2019 Vicor 32
高压Si/Si. C基MOSFET技术参数迭代 600 V/650 V �通�阻 Typ. Max. RDSon (Ω) 开启�� ���荷 Vth Qg (V) (n. C) ��荷 Qgs (n. C) ��荷 Qgd (n. C) ��条件 体二极管�降 VF (V) ��条件 252 24 121 VDS = 350 V, ID = 47 A, VGS = 10 V 1 IF =47 A 580 23 73 IF =47 A, VR = 350 V, di/dt = 100 A/μs 4 248 54 130 VDS = 480 V, ID = 46 A, VGS = 10 V 1 IF =46 A 210 2 18 IF =46 A, VR = 480 V, di/dt = 100 A/μs VGS = 10 V, ID = 17. 6 A 4 167 32 87 VDS = 480 V, ID = 26. 3 A, VGS = 10 V 0. 9 IF =26. 3 A 180 1 10 IF =26. 3 A, VR = 400 V, di/dt = 100 A/μs 0. 07 VGS = 10 V, ID = 15. 1 A 4 67 15 24 VDS = 400 V, ID = 11 A, VGS = 10 V 1 IF =15. 1 A 124 0. 57 7. 8 IF =11 A, VR = 400 V, di/dt = 100 A/μs 0. 078 VGS = 18 V, ID = 13 A 4. 1 58 11 31 VDS = 300 V, ID = 13 A, VGS = 18 V 3. 2 IF =13 A 15 0. 055 8 IF =13 A, VR = 300 V, di/dt = 1100 A/μs 器件�型 器件型号 ��等� (V) Si SJ MOSFET SPW 47 N 60 C 3 600 0. 06 0. 07 VGS = 10 V, ID = 29 A 3 Si SJ MOSFET SPW 47 N 60 CFD 600 0. 07 0. 083 VGS = 10 V, ID = 29 A Si SJ MOSFET IPW 65 R 080 CFD 2 650 0. 072 0. 08 Si SJ MOSFET IPW 60 R 070 CFD 7 600 0. 057 650 0. 06 Si. C MOSFET SCT 3060 ALHR ��条件 反向恢复 �� trr �荷 trr �流 Irrm (ns) (u. C) (A) © 2019 Vicor ��条件 33
高压Si/Si. C基MOSFET技术参数迭代 900 V 器件�型 器件型号 ��等 � (V) Si MOSFET IXFB 52 N 90 P 900 Si SJ MOSFET IPW 90 R 120 C 3 900 Si. C MOSFET C 3 M 0120090 D 900 �通� 阻Typ. 阻Max. RDSon (Ω) ��条件 开启� ��� � 荷Qg Vth (n. C) (V) ��荷 Qgs (n. C) ��荷 Qgd (n. C) ��条件 体二极管� 降 VF (V) ��条件 反向恢 反向恢 复�� 复�荷 复�流 trr Irrm (ns) (u. C) (A) 0. 16 VGS = 10 V, ID = 26 A 5 308 117 132 VDS = 450 V, ID = 26 A, VGS = 10 V 1. 5 IF =52 A 0. 12 VGS = 10 V, ID = 26 A 3 270 32 115 VDS = 400 V, ID = 26 A, VGS = 10 V 0. 8 IF =26 A 920 0. 12 0. 155 VGS = 15 V, ID = 15 A 2. 1 17. 3 4. 8 5 VDS = 400 V, ID = 15 A, VGS = 4/15 V 4. 8 IF =7. 5 A VGS = -4 V 24 300 ��条件 26 IF =26 A, VR = 100 V, di/dt = 100 A/μs 30 65 IF =26 A, VR = 400 V, di/dt = 100 A/μs 0. 12 6. 2 IF =7. 5 A, VR = 400 V, di/dt = 900 A/μs 1. 8 © 2019 Vicor 34
FOM对比(SJ MOSFETs Vs Ga. N HEMTs) 18 16. 53 16 Rdson*Qg (Ω*n. C) 14 11. 97 12 10 8 6. 368 6 4. 32 4 2 0. 374 0 Gen 1 C 3 Cool. MOS 600 V/0. 19Ω Gen 2 C 6 Cool. MOS 600 V/0. 19Ω Gen 2. 5 CP Cool. MOS 600 V/0. 199Ω Gen 3 C 7 Cool. MOS 600 V/0. 18Ω Ga. NMOSFET HEMTs Ga. N 600 V/0. 22Ω 35
SJ MOSFET和Si. C MOSFET(SCT 2120 AF)开关特性对比 图: Si. C MOSFET SCT 2120 AF 650 V/120 m. Ohm Qgs测试波形 通道 1: MOS 漏源电压VDS(黄色, 100 V/DIV); 通道 2: MOS 栅源电压VGS(绿色, 5 V/DIV); 通道 3: MOS 漏极电流ID(紫色, 5 A/DIV); Time: 1 us/DIV 图: LSD 20 N 60 F Qgs测试波形 通道 1: MOS 漏源电压VDS(黄色, 100 V/DIV); 通道 2: MOS 栅源电压VGS(绿色, 5 V/DIV); 通道 3: MOS 漏极电流ID(紫色, 5 A/DIV); Time: 1 us/DIV 测试条件:Vdd=480 V,Id=10 A,感性负载 L=3. 3 m. H, Vgs=18 V, Ig=10 m. A
Si. C MOSFET体二极管反向恢复特性 Si. C MOSFET 650 V/120 m. Ohm SCT 2120 AF CH 1: VDS 50 V/div CH 3: ISD 2 A/div Time: 50 ns/div di. F/dt=100 A/us VDD=50 V IF=10 A 37
超结MOSFET应用在图腾无桥PFC中的问题 MOSFET体二极管 特性是制约因素 Eric Persson, Practical Application of 600 V Ga. N HEMTs in Power Electronics, IEEE APEC 2015 38
集成化趋势 Control & Sensing Signals Thermal Energy Filter IPEM Passive IPEM Filter IPEM Active IPEM (DRAM) (CMOS Inverter) Ref: Dr. Fred C. LEE’s presentation, CPES, Virginia Tech. © 2019 Vicor 40
Active IPEM V ac Gate Driver Si. C Diode Cool. MOSFET Gate Driver 集成化趋势 • • C MOSFET Efficiency (%) PFC Ref: Dr. Fred C. LEE’s presentation, CPES, Virginia Tech. DC/DC IPEM Discrete © 2019 Vicor Output Voltage (V) 41
集成化趋势 Product specifications Ref: Dr. Fred C. LEE’s presentation, CPES, Virginia Tech. Automatic Assembly Line © 2019 Vicor 42
Thanks for your attentions!
- Slides: 43