Focal Plane detectors for Super Heavy Element research

  • Slides: 28
Download presentation
Focal Plane detectors for Super Heavy Element research RIKEN, Nishina Center Kouji Morimoto

Focal Plane detectors for Super Heavy Element research RIKEN, Nishina Center Kouji Morimoto

RILAC Facility CSM Acc. Tanks RILAC Acc. Tanks RFQ-Linac 18 GHz ECR Ion Source

RILAC Facility CSM Acc. Tanks RILAC Acc. Tanks RFQ-Linac 18 GHz ECR Ion Source

GARIS and GARIS-II Beam from RILAC GARIS-II GARIS Chemistry room GARIS-II GARIS 3

GARIS and GARIS-II Beam from RILAC GARIS-II GARIS Chemistry room GARIS-II GARIS 3

RIKEN GARIS(Gas-filled Recoil Ion Separator)

RIKEN GARIS(Gas-filled Recoil Ion Separator)

Focal Plane Detector system TOF 29. 5 α cm α SSD box ions 6

Focal Plane Detector system TOF 29. 5 α cm α SSD box ions 6 cm PSD

209 Bi + 70 Zn → 278113 36. 75 Me. V TOF 44. 61

209 Bi + 70 Zn → 278113 36. 75 Me. V TOF 44. 61 ns 30. 33 mm + n 278113 a 1 st chain 23 -July-2004 18: 55 (JST) a 274 Rg 36. 47 Me. V TOF 45. 69 ns 30. 08 mm CN 278113 a 11. 68 Me. V (PSD) 344 μs 30. 49 mm a 11. 52 Me. V (PSD) 4. 93 ms 30. 16 mm 0. 88+10. 43=11. 31 Me. V (PSD+SSD) 270 Mt 34. 3 ms 29. 61 mm a a 2 nd chain 10. 03 Me. V 2. 32 Me. V (escape) 1. 136+8. 894(PSD+SSD) 1. 63 s 2 -April-2005 2: 18 (JST) 266 Bh 7. 163 ms 29. 45 mm 29. 79 mm a a 9. 08 Me. V (PSD) 9. 77 Me. V (PSD) Wilk et al. Phys. Rev. Lett. 85(2000) 2. 469 s 1. 31 s 9. 29± 0. 1 Me. V 0. 87 sec 262 Db 30. 91 mm 29. 65 mm s. f. 204. 05 Me. V(PSD) 40. 9 s 30. 25 mm 11. 15 Me. V 6. 149+5. 003 (PSD+SSD) 270 Mt 9. 260 ms 30. 40 mm 274 Rg CN s. f. 192. 32 Me. V(PSD) 0. 787 s 30. 47 mm Table of Isotopes T 1/2 34± 4 sec S. F. ~ 33% : α~ 64%

GARIS + gas-jet system Gas-jet coupled to GARIS as a pre-separator (Promising tool for

GARIS + gas-jet system Gas-jet coupled to GARIS as a pre-separator (Promising tool for next-generation SHE chemistry) 248 Cm(22 Ne, 5 n)265 Sg Preliminary H. Haba, H. Kikunaga, D. Kaji et al. , J. Nucl. Radiochem. Sci. , 9 27(2008). 7

Gas-jet transport system coupled to GARIS Mylar vacuum window (60 mmΦ): 1 μm thickness

Gas-jet transport system coupled to GARIS Mylar vacuum window (60 mmΦ): 1 μm thickness at 100 k. Pa Support grids: honeycomb (89%) or circle (72%) structure Chemically inert Teflon chamber: direct injection of chemical reagents Φ 60 mm Mylar window (Φ 60 mm) SUS chamber SHE atoms To chemistry apparatus GARIS Spacer (0, 30, and 60 mm) ~100 Pa 0 Honeycomb grid 100 mm He gas (+ aerosol) Gas-get chamber@GARIS

GARIS focal plane setup

GARIS focal plane setup

Silicon detector Box TOF α α 6 cm PSD SSD box ions CANBERRA (PIPS)

Silicon detector Box TOF α α 6 cm PSD SSD box ions CANBERRA (PIPS) 58 x 58 mm 2 3. 75 mm x 16 strips, pad resistance 8 kΩ Depletion depth 300 μm Focal plane detector (Position sensitive PSD) Side detector

0 5. 5 6. 0 6. 5 7. 0 7. 5 Ea (Me. V)

0 5. 5 6. 0 6. 5 7. 0 7. 5 Ea (Me. V) 7. 450 Me. V pn transfer 7. 837, 7. 897 Me. V 2 pn transfer 8. 088 Me. V 3 pn transfer 212 m. At 7. 679 Me. V 2 pn transfer 213 Rn 212 At 211 Po 7. 275 Me. V pn transfer 6. 775 Me. V 4 p transfer 209 Bi 8. 0 8. 426 Me. V 4 pn transfer 8. 546, 8. 478 Me. V 4 pn transfer 214 m. Fr 214 Fr 211 m. Po 300 213 Fr + 64 Ni evaporation residues 6. 281 Me. V a 3 n evap. 6. 383 Me. V 196 Po 6. 520 Me. V a 4 n evap. 199 At 6. 643 Me. V p 4 n evap. 200 197 Po 400 197 m. Po 6. 058 Me. V 6. 182 Me. V 198 Po 199 Po 100 5. 862 Me. V 140 Ce 200 Po Counts/10 ke. V Energy calibration of silicon detector + 64 Ni transfer products 8. 5 to GARIS 64 Ni 209 Bi 9. 5 Nat. Ce system check & energy calibration

Position resolution Escaped events from PSD Full deposited at PSD Position differences between 271

Position resolution Escaped events from PSD Full deposited at PSD Position differences between 271 Ds implantation and sequential alpha-decays

Silicon detector box Detection Efficiency for decaying α particles: 85 % (Geometrical) Dynamic range:

Silicon detector box Detection Efficiency for decaying α particles: 85 % (Geometrical) Dynamic range: high gain 0 - 20 Me. V for α decay low gain 0 - 200 Me. V for spontaneous fission Pre Amp (Kumagai-san Amp): Cf=2 pf (Focal Plane PSD), Cf=3 pf (Side ) Shaping time: 2. 5 μsec Energy resolution: Focal Plane : 39 ke. V (FWHM) Focal plane + side : 66 ke. V Position resolution: read out up and down 0. 6 mm (10 Me. V α) For fast decay: 5μsec – Noise suppression: cooling 5 ℃ Dual ADC (2 nd gate)

To. F detector using thin mylar foil and MCP TOF 29. 5 α cm

To. F detector using thin mylar foil and MCP TOF 29. 5 α cm α 6 cm PSD SSD box ions Magnetic shield 磁気シールド 2つの役目: TOF測定 入射、崩壊イベントの区別

Time of flight detector Φ 80 mm Foil: 0. 6 μm mylar + Al

Time of flight detector Φ 80 mm Foil: 0. 6 μm mylar + Al 100Å + Cs. I 20 μg/cm 2 Wire: Φ 12 μm W+Au 2 mm pitch Timing resolution: for 241 Am α 530 psec (FWHM) Detection Efficiency: for 99. 9 % 241 Am Transmission efficiency ( two sets of detectors) 94 % (geometrical) Mass resolution A=270 で 約10 α

Raw data (accumulated for 12 hours) Beam-like particles E [Me. V] 40 278113 30

Raw data (accumulated for 12 hours) Beam-like particles E [Me. V] 40 278113 30 Target-like particles 20 10 0 0 Light charged particles 20 40 60 80 100 TOF [ns] Mass gate Counts 30 20 278113 10 0 10 1 Counts per 0. 01 Me. V 50 100 200 Mass 300 0. 3 cps 0 10 20 Total [ ROI = 8 - 12 Me. V ] 5 0 4. 2 x 10 -3 cps 8 9 10 11 12 Anti-coincidence with TOF detectors 6. 3 x 10 -4 cps 8 9 10 11 12 ER-α correlation (DP = ± 1 mm, Dt = 60 s) 5 0 0 Total (High gain) 8 a 4 a 3 9 10 a 2 11 Energy / Me. V a 1 12

Recent development and Future plans ○ Measurement of short life decay ( < 5μsec

Recent development and Future plans ○ Measurement of short life decay ( < 5μsec ) → measure the pulse shape of pre-amp signal using Flash ADC ○ αーγ measurement → Si + Cd. Te → Si + Ge ○ Large area focal plane detectors for GARIS-II → DSSD array → large area To. F detector using large area MCP ○ Improvement for mass measurement → Ion chamber

Short decay measurement PSD TOF Δt E 2 6 cm α α E 1

Short decay measurement PSD TOF Δt E 2 6 cm α α E 1 SSD box PSD rear Δt E2 E 1 Pulse shape Computer Pre. AMP Pulse height VME 16 strips Flash. ADC PSD front Shaping. Amp PH-ADC Signal processing diagram Pre. AMP CAMAC ions analysis

Recent development and Future plans ○ Measurement of short life decay ( < 5μsec

Recent development and Future plans ○ Measurement of short life decay ( < 5μsec ) → measure the pulse shape of pre-amp signal using Flash ADC ○ αーγ measurement → Si + Cd. Te → Si + Ge ○ Large area focal plane detectors for GARIS-II → DSSD array → large area To. F detector using large area MCP ○ Improvement for mass measurement → Ion chamber

4000 [参考]BGS focal plane PH(Gamma) [chn] Si detector BOX ER 241 Am TOF detectors

4000 [参考]BGS focal plane PH(Gamma) [chn] Si detector BOX ER 241 Am TOF detectors 1000 3000 59. 5 ke. V 500 2000 FWHM=2. 2 ke. V (for 60 ke. V γ-ray) 1000 0 ER TOF detectors 0 1000 8000 10 10 2000 3000 4000 PH(Alpha) [chn] Counts Si detector BOX 26. 4 ke. V 0 12001300140015001600 Si-Cd. Te array Acrorad製Cd. Te素子 10 mmx 1 mmt 1500 5. 48 Me. V Si-Ge array 5. 44 Me. V α-γmeasuremnt 67 ns decay 6000 4000 2000 0 0 100 200 300 TDC [chn] 400 500

Recent development and Future plans ○ Measurement of short life decay ( < 5μsec

Recent development and Future plans ○ Measurement of short life decay ( < 5μsec ) → measure the pulse shape of pre-amp signal using Flash ADC ○ αーγ measurement → Si + Cd. Te → Si + Ge ○ Large area focal plane detectors for GARIS-II → DSSD array → large area To. F detector using large area MCP ○ Improvement for mass measurement → Ion chamber

GARIS and GARIS-II Beam from RILAC GARIS-II GARIS Chemistry room GARIS-II GARIS 22

GARIS and GARIS-II Beam from RILAC GARIS-II GARIS Chemistry room GARIS-II GARIS 22

GARIS and GARIS-II Beam line GARIS GAR IS e m GA II SI R

GARIS and GARIS-II Beam line GARIS GAR IS e m GA II SI R a Be lin GARIS-II commissioning March-2010 23

Comparison (GARIS-II vs. World working gas-filled RS) TASCA (HTM) (SIM) DGFRS BGS RITU GARIS

Comparison (GARIS-II vs. World working gas-filled RS) TASCA (HTM) (SIM) DGFRS BGS RITU GARIS DQh. Qv Qh. D Qv. DQh. Qv. D Length [m] 4. 0 4. 7 5. 8 3. 5 5. 1 Bend. Angle [deg] 23 25+45 25 45+10 30 30 30+7 Solid angle [msr] 8. 8 45. 0 10. 0 12. 2 13. 1 4. 3 20. 2 Bρ(max) [Tm] 3. 10 2. 50 2. 20 2. 16 2. 40 2. 43 Dispersion [mm/%] 7. 5 20. 0 10. 0 9. 7 9. 0 17. 7 Transmission [%] 41* 40* 60* 36* 75 Configuration 49 -59* ? DQh. Qv DQv. Qh GARIS-II Qv. DQh. Qv. D 238 U(48 Ca, 3 n)283112 Cross section Intensity Target thickness Transmission : 3 pb ** : 2 pu. A : 500 ug/cm 2 : 75% 3 atoms/day * M. Shaedel, TASCA workshop 2006 (2006). ** Yu. Ts. Oganessian et al. , Nucl. Phys. A 734, 195 (2004). 24

Development of GARIS-II focal plane detector TOF 29. 5 α cm α 6 cm

Development of GARIS-II focal plane detector TOF 29. 5 α cm α 6 cm PSD SSD box ions Large area To. F detector Large area silicon detector box DSSD: X: 60 strip, Y: 60 strip DSSD: 16 strip x 16 strip 70 mmφ → 120 mmφ Fine pitch (1 mm) : low capacitance 120 mm 60 mm 70 mm DSSD 120 mm Front: high gain ( 0 - 20 Me. V ) Rear: low gain ( 0 - 200 Me. V ) Read out: 60 x 8 = 480 ch.

Recent development and Future plans ○ Measurement of short life decay ( < 5μsec

Recent development and Future plans ○ Measurement of short life decay ( < 5μsec ) → measure the pulse shape of pre-amp signal using Flash ADC ○ αーγ measurement → Si + Cd. Te → Si + Ge ○ Large area focal plane detectors for GARIS-II → DSSD array → large area To. F detector using large area MCP ○ Improvement for mass measurement → Ion chamber