Floating-Gate Translinear Circuits (MITE Networks) Iout = I 12 / I 2 Other Applications: Amplifiers, Filters, Log-Domain Filters, Sensor Interfaces Developed by B. Minch, et. al
Capacitor-Based Circuits Resistor-Based Design Capacitors and Inductors define the circuit dynamics Capacitor-Based Design Resistors and Inductors define the circuit dynamics Capacitors are the natural elements on silicon ICs
A Floating-Gate Technology for Digital CMOS Processes C 1 V 1 Cf C 2 • Creates a DC Measurement of classic C-V curves V 2 C 3 Vref V 4 C 4 Vout Gain = DVout/ DVin = - C 1 / Cf Single-Poly FG Circuits: Brought to you by Brad and Paul
Floating-Gate Multiplication Vdd 23 Vtun Vdibl + Vin + Iout Output Current (n. A) 22 21 20 W=0 19 W = 0. 35 18 17 W=0 W = -0. 35 W = -0. 70 W = 1. 40 W = -1. 40 -0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0. 2 Differential input (V) 0. 3 0. 4 0. 5
Autozeroing Floating-Gate Amplifier (AFGA)
AFGA Frequency Response
Dynamics Range in the AFGA Linear Range AFGA Noise Spectrum
Floating-Gate Based Capacitor Sensor Circuit V dd 3. 8 V tp 3. 6 Mp C 2 V out Vt Mn Pseudo-AFGA circuit Smaller Increase 3. 4 3. 3 3. 2 3. 1 AFGA circuit Increasing Capacitance 3. 5 V dd Variable Capacitor 3. 7 V dd Smaller Decrease Decreasing Capacitance 3 2. 9 0 0. 2 0. 4 0. 6 0. 8 1 1. 2 Time (s) 1. 4 1. 6 1. 8 2
Autozeroing Second-Order Section
Autozeroing Second-Order Section
Auto. SOS Frequency Behavior Auto. SOS Step Responses
Frequency Response and Harmonic Distortion
4 C (Capacitively Coupled Current Conveyors) AFGA C 4 Pseudo-AFGA Tunneling Circuit Injection Circuit Hasler, Kucic, and Minch, Midwest 99
PAFGA Frequency Response 10 Vtp = 2. 561 V Gain Vt = 0. 610 V Vt = 0. 589 V Vtp = 2. 537 V 1 Vtp = 2. 501 V Vt = 0. 544 V 0. 2 10 1 10 2 10 3 Frequency (Hz) 10 4 10 5