Fig 55 1 Fig 55 2 Fig 55

  • Slides: 42
Download presentation
Fig. 55 -1

Fig. 55 -1

Fig. 55 -2

Fig. 55 -2

Fig. 55 -3

Fig. 55 -3

Fig. 55 -4 Tertiary consumers Microorganisms and other detritivores Detritus Secondary consumers Primary producers

Fig. 55 -4 Tertiary consumers Microorganisms and other detritivores Detritus Secondary consumers Primary producers Heat Key Chemical cycling Energy flow Sun

TECHNIQUE 80 Percent reflectance Fig. 55 -5 Snow Clouds 60 Vegetation 40 Soil 20

TECHNIQUE 80 Percent reflectance Fig. 55 -5 Snow Clouds 60 Vegetation 40 Soil 20 Liquid water 0 400 600 Visible 800 1, 000 Near-infrared Wavelength (nm) 1, 200

Fig. 55 -6 Net primary production (kg carbon/m 2·yr) · 0 1 2 3

Fig. 55 -6 Net primary production (kg carbon/m 2·yr) · 0 1 2 3

EXPERIMENT land g Is Lon B eat Gr A C th u So ay

EXPERIMENT land g Is Lon B eat Gr A C th u So ay B D E F G Shinnecock Bay Moriches Bay Atlantic Ocean RESULTS Phytoplankton density (millions of cells per m. L) Fig. 55 -7 30 Ammonium enriched 24 Phosphate enriched 18 Unenriched control 12 6 0 A B C D E Collection site F G

Fig. 55 -7 a EXPERIMENT d an l s I Long B A eat

Fig. 55 -7 a EXPERIMENT d an l s I Long B A eat r G C So uth y Ba D E F Shinnecock G Bay Moriches Bay Atlantic Ocean

Fig. 55 -7 b Phytoplankton density (millions of cells per m. L) RESULTS 30

Fig. 55 -7 b Phytoplankton density (millions of cells per m. L) RESULTS 30 Ammonium enriched 24 Phosphate enriched 18 Unenriched control 12 6 0 A B C D E Collection site F G

Table 55 -1

Table 55 -1

Fig. 55 -8 Net primary production (g/m 2·yr) · 3, 000 Tropical forest 2,

Fig. 55 -8 Net primary production (g/m 2·yr) · 3, 000 Tropical forest 2, 000 Temperate forest 1, 000 Mountain coniferous forest Desert shrubland 0 Temperate grassland Arctic tundra 0 500 1, 000 Actual evapotranspiration (mm H 2 O/yr)

Fig. 55 -9 Plant material eaten by caterpillar 200 J 67 J Feces 100

Fig. 55 -9 Plant material eaten by caterpillar 200 J 67 J Feces 100 J 33 J Growth (new biomass) Cellular respiration

Fig. 55 -10 Tertiary consumers Secondary consumers 10 J 100 J Primary consumers 1,

Fig. 55 -10 Tertiary consumers Secondary consumers 10 J 100 J Primary consumers 1, 000 J Primary producers 10, 000 J 1, 000 J of sunlight

Fig. 55 -11 Trophic level Tertiary consumers Secondary consumers Primary producers Dry mass (g/m

Fig. 55 -11 Trophic level Tertiary consumers Secondary consumers Primary producers Dry mass (g/m 2) 1. 5 11 37 809 (a) Most ecosystems (data from a Florida bog) Trophic level Primary consumers (zooplankton) Primary producers (phytoplankton) Dry mass (g/m 2) 21 4 (b) Some aquatic ecosystems (data from the English Channel)

Fig. 55 -12

Fig. 55 -12

Fig. 55 -13 Reservoir A Reservoir B Organic materials available as nutrients Organic materials

Fig. 55 -13 Reservoir A Reservoir B Organic materials available as nutrients Organic materials unavailable as nutrients Living organisms, detritus Assimilation, photosynthesis Fossilization Coal, oil, peat Respiration, decomposition, excretion Burning of fossil fuels Reservoir C Reservoir D Inorganic materials available as nutrients Inorganic materials unavailable as nutrients Atmosphere, soil, water Weathering, erosion Formation of sedimentary rock Minerals in rocks

Fig. 55 -14 a Solar energy Transport over land Net movement of water vapor

Fig. 55 -14 a Solar energy Transport over land Net movement of water vapor by wind Precipitation Evaporation over ocean from ocean Precipitation over land Evapotranspiration from land Runoff and groundwater Percolation through soil

Fig. 55 -14 b CO 2 in atmosphere Photosynthesis Cellular respiration Burning of fossil

Fig. 55 -14 b CO 2 in atmosphere Photosynthesis Cellular respiration Burning of fossil fuels Phytoand wood plankton Higher-level consumers Primary consumers Carbon compounds in water Detritus Decomposition

Fig. 55 -14 c N 2 in atmosphere Assimilation Nitrogen-fixing bacteria NO 3– Decomposers

Fig. 55 -14 c N 2 in atmosphere Assimilation Nitrogen-fixing bacteria NO 3– Decomposers Ammonification NH 3 Nitrogen-fixing soil bacteria Nitrification NO 2– NH 4+ Nitrifying bacteria Denitrifying bacteria Nitrifying bacteria

Fig. 55 -14 d Precipitation Geologic uplift Weathering of rocks Runoff Consumption Decomposition Plankton

Fig. 55 -14 d Precipitation Geologic uplift Weathering of rocks Runoff Consumption Decomposition Plankton Dissolved PO 43– Uptake Sedimentation Leaching Soil Plant uptake of PO 43–

Ecosystem type EXPERIMENT Arctic Subarctic Boreal Temperate Grassland A Mountain G M T U

Ecosystem type EXPERIMENT Arctic Subarctic Boreal Temperate Grassland A Mountain G M T U H, I S N L D B, C P E, F O J K R Q RESULTS 80 Percent of mass lost Fig. 55 -15 70 60 K J 50 40 D 30 20 10 0 – 15 C A – 10 BE F I G H U R O Q N M L P T S – 5 0 5 10 Mean annual temperature (ºC) 15

Fig. 55 -15 a EXPERIMENT Ecosystem type Arctic Subarctic Boreal Temperate A Grassland Mountain

Fig. 55 -15 a EXPERIMENT Ecosystem type Arctic Subarctic Boreal Temperate A Grassland Mountain G M T U H, I S N L D B, C E, F P O J K Q R

Fig. 55 -15 b RESULTS Percent of mass lost 80 70 60 K J

Fig. 55 -15 b RESULTS Percent of mass lost 80 70 60 K J 50 40 D 30 20 10 0 – 15 C A – 10 BE F I G H U R O Q N M L P T S – 5 0 5 10 Mean annual temperature (ºC) 15

Fig. 55 -16 (a) Concrete dam and weir Nitrate concentration in runoff (mg/L) (b)

Fig. 55 -16 (a) Concrete dam and weir Nitrate concentration in runoff (mg/L) (b) Clear-cut watershed 80 60 40 20 4 3 2 1 0 Deforested Completion of tree cutting 1965 Control 1966 (c) Nitrogen in runoff from watersheds 1967 1968

Fig. 55 -16 a (a) Concrete dam and weir

Fig. 55 -16 a (a) Concrete dam and weir

Fig. 55 -16 b (b) Clear-cut watershed

Fig. 55 -16 b (b) Clear-cut watershed

Nitrate concentration in runoff (mg/L) Fig. 55 -16 c 80 Deforested 60 40 20

Nitrate concentration in runoff (mg/L) Fig. 55 -16 c 80 Deforested 60 40 20 4 3 Completion of tree cutting Control 2 1 0 1965 (c) Nitrogen in runoff from watersheds 1966 1967 1968

Fig. 55 -17

Fig. 55 -17

Fig. 55 -18 Winter Summer

Fig. 55 -18 Winter Summer

Fig. 55 -18 a Winter

Fig. 55 -18 a Winter

Fig. 55 -18 b Summer

Fig. 55 -18 b Summer

Fig. 55 -19 4. 5 4. 4 p. H 4. 3 4. 2 4.

Fig. 55 -19 4. 5 4. 4 p. H 4. 3 4. 2 4. 1 4. 0 1965 1970 1975 1980 1985 1990 1995 2000 Year

Fig. 55 -20 Concentration of PCBs Herring gull eggs 124 ppm Lake trout 4.

Fig. 55 -20 Concentration of PCBs Herring gull eggs 124 ppm Lake trout 4. 83 ppm Smelt 1. 04 ppm Zooplankton 0. 123 ppm Phytoplankton 0. 025 ppm

Fig. 55 -21 14. 9 390 14. 8 380 14. 6 CO 2 concentration

Fig. 55 -21 14. 9 390 14. 8 380 14. 6 CO 2 concentration (ppm) 370 Temperature 14. 5 360 14. 4 14. 3 350 14. 2 340 14. 1 CO 2 330 14. 0 13. 9 320 13. 8 310 300 13. 7 13. 6 1960 1965 1970 1975 1980 1985 Year 1990 1995 2000 2005 Average global temperature (ºC) 14. 7

Fig. 55 -22

Fig. 55 -22

Fig. 55 -23 Ozone layer thickness (Dobsons) 350 300 250 200 100 0 1955

Fig. 55 -23 Ozone layer thickness (Dobsons) 350 300 250 200 100 0 1955 ’ 60 ’ 65 ’ 70 ’ 75 ’ 80 ’ 85 Year ’ 90 ’ 95 2000 ’ 05

Fig. 55 -24 Chlorine atom O 2 Chlorine O 3 Cl. O O 2

Fig. 55 -24 Chlorine atom O 2 Chlorine O 3 Cl. O O 2 Cl. O Cl 2 O 2 Sunlight

Fig. 55 -25 (a) September 1979 (b) September 2006

Fig. 55 -25 (a) September 1979 (b) September 2006

Fig. 55 -UN 1 Tertiary consumers Microorganisms and other detritivores Detritus Secondary consumers Primary

Fig. 55 -UN 1 Tertiary consumers Microorganisms and other detritivores Detritus Secondary consumers Primary producers Key Chemical cycling Energy flow Heat Sun

Fig. 55 -UN 2 Organic materials available as nutrients Living organisms, detritus Assimilation, photosynthesis

Fig. 55 -UN 2 Organic materials available as nutrients Living organisms, detritus Assimilation, photosynthesis Organic materials unavailable as nutrients Fossilization Coal, oil, peat Respiration, decomposition, excretion Inorganic materials available as nutrients Atmosphere, soil, water Burning of fossil fuels Weathering, erosion Formation of sedimentary rock Inorganic materials unavailable as nutrients Minerals in rocks

Fig. 55 -UN 3

Fig. 55 -UN 3

Fig. 55 -UN 4

Fig. 55 -UN 4