Fig 28 01 1 m Fig 28 02

  • Slides: 69
Download presentation
Fig. 28 -01 1 µm

Fig. 28 -01 1 µm

Fig. 28 -02 -1 Cyanobacterium Red alga Primary endosymbiosis Heterotrophic eukaryote Over the course

Fig. 28 -02 -1 Cyanobacterium Red alga Primary endosymbiosis Heterotrophic eukaryote Over the course of evolution, this membrane was lost. Green alga 1 µm

Fig. 28 -02 -2 Plastid Dinoflagellates Secondary endosymbiosis Cyanobacterium Apicomplexans Red alga Primary endosymbiosis

Fig. 28 -02 -2 Plastid Dinoflagellates Secondary endosymbiosis Cyanobacterium Apicomplexans Red alga Primary endosymbiosis Stramenopiles Heterotrophic eukaryote Over the course of evolution, this membrane was lost. Secondary endosymbiosis Plastid Euglenids Secondary endosymbiosis Green alga Chlorarachniophytes

Fig. 28 -03 a Parabasalids Euglenozoans Excavata Diplomonads Alveolates Dinoflagellates Apicomplexans Diatoms Stramenopiles Golden

Fig. 28 -03 a Parabasalids Euglenozoans Excavata Diplomonads Alveolates Dinoflagellates Apicomplexans Diatoms Stramenopiles Golden algae Chromalveolata Ciliates Brown algae Oomycetes Forams Radiolarians Green algae Chlorophytes Charophyceans Land plants Archaeplastida Red algae Rhizaria Chlorarachniophytes Gymnamoebas Entamoebas Opisthokonts Nucleariids Fungi Choanoflagellates Animals Unikonta Amoebozoans Slime molds

Fig. 28 -03 b Parabasalids Euglenozoans Excavata Diplomonads

Fig. 28 -03 b Parabasalids Euglenozoans Excavata Diplomonads

Fig. 28 -03 c Apicomplexans Ciliates Stramenopiles Diatoms Golden algae Brown algae Oomycetes Chromalveolata

Fig. 28 -03 c Apicomplexans Ciliates Stramenopiles Diatoms Golden algae Brown algae Oomycetes Chromalveolata Alveolates Dinoflagellates

Fig. 28 -03 d Forams Radiolarians Rhizaria Chlorarachniophytes

Fig. 28 -03 d Forams Radiolarians Rhizaria Chlorarachniophytes

Fig. 28 -03 e Green algae Chlorophytes Charophyceans Land plants Archaeplastida Red algae

Fig. 28 -03 e Green algae Chlorophytes Charophyceans Land plants Archaeplastida Red algae

Fig. 28 -03 f Gymnamoebas Entamoebas Opisthokonts Nucleariids Fungi Choanoflagellates Animals Unikonta Amoebozoans Slime

Fig. 28 -03 f Gymnamoebas Entamoebas Opisthokonts Nucleariids Fungi Choanoflagellates Animals Unikonta Amoebozoans Slime molds

Fig. 28 -03 g 5 µm

Fig. 28 -03 g 5 µm

Fig. 28 -03 h 50 µm

Fig. 28 -03 h 50 µm

Fig. 28 -03 i 20 µm

Fig. 28 -03 i 20 µm

Fig. 28 -03 j 20 µm 50 µm

Fig. 28 -03 j 20 µm 50 µm

Fig. 28 -03 l 100 µm

Fig. 28 -03 l 100 µm

Fig. 28 -UN 1 Parabasalids Kinetoplastids Euglenozoans Euglenids Excavata Diplomonads Chromalveolata Rhizaria Archaeplastida Unikonta

Fig. 28 -UN 1 Parabasalids Kinetoplastids Euglenozoans Euglenids Excavata Diplomonads Chromalveolata Rhizaria Archaeplastida Unikonta

Fig. 28 -04 Undulating membrane Flagella 5 µm

Fig. 28 -04 Undulating membrane Flagella 5 µm

Fig. 28 -05 Flagella 0. 2 µm Crystalline rod Ring of microtubules

Fig. 28 -05 Flagella 0. 2 µm Crystalline rod Ring of microtubules

Fig. 28 -06 9 µm

Fig. 28 -06 9 µm

Fig. 28 -07 Long flagellum Eyespot Short flagellum Contractile vacuole Light detector Nucleus Chloroplast

Fig. 28 -07 Long flagellum Eyespot Short flagellum Contractile vacuole Light detector Nucleus Chloroplast Plasma membrane Euglena (LM) 5 µm Pellicle

Fig. 28 -UN 2 Excavata Dinoflagellates Diatoms Golden algae Brown algae Oomycetes Stramenopiles Chromalveolata

Fig. 28 -UN 2 Excavata Dinoflagellates Diatoms Golden algae Brown algae Oomycetes Stramenopiles Chromalveolata Apicomplexans Alveolates Ciliates Rhizaria Archaeplastida Unikonta

Fig. 28 -08 Alveoli Alveolate 0. 2 µm Flagellum

Fig. 28 -08 Alveoli Alveolate 0. 2 µm Flagellum

Fig. 28 -09 3 µm Flagella

Fig. 28 -09 3 µm Flagella

Fig. 28 -10 -1 Inside human Merozoite Liver cell Apex Red blood cell Merozoite

Fig. 28 -10 -1 Inside human Merozoite Liver cell Apex Red blood cell Merozoite (n) 0. 5 µm Red blood cells Gametocytes (n) Key Haploid (n) Diploid (2 n)

Fig. 28 -10 -2 Inside mosquito Inside human Merozoite Liver cell Apex Red blood

Fig. 28 -10 -2 Inside mosquito Inside human Merozoite Liver cell Apex Red blood cell Merozoite (n) Zygote (2 n) 0. 5 µm Red blood cells FERTILIZATION Gametes Gametocytes (n) Key Haploid (n) Diploid (2 n)

Fig. 28 -10 -3 Inside mosquito Inside human Merozoite Sporozoites (n) Liver cell Oocyst

Fig. 28 -10 -3 Inside mosquito Inside human Merozoite Sporozoites (n) Liver cell Oocyst MEIOSIS Apex Red blood cell Merozoite (n) Zygote (2 n) 0. 5 µm Red blood cells FERTILIZATION Gametes Gametocytes (n) Key Haploid (n) Diploid (2 n)

Fig. 28 -11 Contractile vacuole Oral groove Cell mouth 50 µm Cilia Micronucleus Food

Fig. 28 -11 Contractile vacuole Oral groove Cell mouth 50 µm Cilia Micronucleus Food vacuoles Macronucleus (a) Feeding, waste removal, and water balance MEIOSIS Compatible mates Diploid micronucleus Haploid micronucleus The original Diploid macronucleus micronucleus disintegrates. MICRONUCLEAR FUSION Key (b) Conjugation and reproduction Conjugation Reproduction

Fig. 28 -11 a Contractile vacuole Oral groove 50 µm Cilia Cell mouth Micronucleus

Fig. 28 -11 a Contractile vacuole Oral groove 50 µm Cilia Cell mouth Micronucleus Macronucleus (a) Feeding, waste removal, and water balance Food vacuoles

Fig. 28 -11 b-1 MEIOSIS Compatible mates Diploid micronucleus Haploid micronucleus Key (b) Conjugation

Fig. 28 -11 b-1 MEIOSIS Compatible mates Diploid micronucleus Haploid micronucleus Key (b) Conjugation and reproduction Conjugation Reproduction

Fig. 28 -11 b-2 MEIOSIS Compatible mates Diploid micronucleus The original macronucleus disintegrates. Haploid

Fig. 28 -11 b-2 MEIOSIS Compatible mates Diploid micronucleus The original macronucleus disintegrates. Haploid micronucleus Diploid micronucleus MICRONUCLEAR FUSION Key (b) Conjugation and reproduction Conjugation Reproduction

Fig. 28 -12 Hairy flagellum Smooth flagellum 5 µm

Fig. 28 -12 Hairy flagellum Smooth flagellum 5 µm

3 µm Fig. 28 -13

3 µm Fig. 28 -13

Fig. 28 -14 Flagellum Outer container Living cell 25 µm

Fig. 28 -14 Flagellum Outer container Living cell 25 µm

Fig. 28 -15 Blade Stipe Holdfast

Fig. 28 -15 Blade Stipe Holdfast

Fig. 28 -16 -1 Sporangia 10 cm Sporophyte (2 n) MEIOSIS Zoospore Female Gametophytes

Fig. 28 -16 -1 Sporangia 10 cm Sporophyte (2 n) MEIOSIS Zoospore Female Gametophytes (n) Male Egg Key Haploid (n) Diploid (2 n) Sperm

Fig. 28 -16 -2 Sporangia 10 cm Sporophyte (2 n) MEIOSIS Zoospore Female Developing

Fig. 28 -16 -2 Sporangia 10 cm Sporophyte (2 n) MEIOSIS Zoospore Female Developing sporophyte Mature female gemetophyte (n) Key Haploid (n) Diploid (2 n) Zygote (2 n) Gametophytes (n) Male Egg FERTILIZATION Sperm

Fig. 28 -17 -1 Germ tube Cyst Hyphae ASEXUAL REPRODUCTION Zoospore (2 n) Zoosporangium

Fig. 28 -17 -1 Germ tube Cyst Hyphae ASEXUAL REPRODUCTION Zoospore (2 n) Zoosporangium (2 n) Key Haploid (n) Diploid (2 n)

Fig. 28 -17 -2 Oogonium Germ tube Egg nucleus (n) Cyst Hyphae ASEXUAL REPRODUCTION

Fig. 28 -17 -2 Oogonium Germ tube Egg nucleus (n) Cyst Hyphae ASEXUAL REPRODUCTION Zoospore (2 n) Zoosporangium (2 n) Key Haploid (n) Diploid (2 n) MEIOSIS Antheridial hypha with sperm nuclei (n)

Fig. 28 -17 -3 Oogonium Germ tube Egg nucleus (n) Cyst Hyphae Antheridial hypha

Fig. 28 -17 -3 Oogonium Germ tube Egg nucleus (n) Cyst Hyphae Antheridial hypha with sperm nuclei (n) MEIOSIS ASEXUAL REPRODUCTION Zoospore (2 n) Zygote germination Zoosporangium (2 n) Key Haploid (n) Diploid (2 n) SEXUAL REPRODUCTION FERTILIZATION Zygotes (oospores) (2 n)

Fig. 28 -UN 3 Excavata Chromalveolata Foraminiferans Radiolarians Rhizaria Chlorarachniophytes Archaeplastida Unikonta

Fig. 28 -UN 3 Excavata Chromalveolata Foraminiferans Radiolarians Rhizaria Chlorarachniophytes Archaeplastida Unikonta

Fig. 28 -18 Pseudopodia 200 µm

Fig. 28 -18 Pseudopodia 200 µm

Fig. 28 -UN 4 Excavata Chromalveolata Rhizaria Chlorophytes Green algae Charophyceans Land plants Archaeplastida

Fig. 28 -UN 4 Excavata Chromalveolata Rhizaria Chlorophytes Green algae Charophyceans Land plants Archaeplastida Red algae Unikonta

Fig. 28 -19 Bonnemaisonia hamifera 20 cm 8 mm Dulse (Palmaria palmata) Nori. The

Fig. 28 -19 Bonnemaisonia hamifera 20 cm 8 mm Dulse (Palmaria palmata) Nori. The red alga Porphyra is the source of a traditional Japanese food. The seaweed is grown on nets in shallow coastal waters. The harvested seaweed is spread on bamboo screens to dry. Paper-thin, glossy sheets of nori make a mineral-rich wrap for rice, seafood, and vegetables in sushi.

Fig. 28 -19 a Bonnemaisonia hamifera 8 mm

Fig. 28 -19 a Bonnemaisonia hamifera 8 mm

Fig. 28 -19 b 20 cm Dulse (Palmaria palmata)

Fig. 28 -19 b 20 cm Dulse (Palmaria palmata)

Fig. 28 -19 c Nori. The red alga Porphyra is the source of a

Fig. 28 -19 c Nori. The red alga Porphyra is the source of a traditional Japanese food. The seaweed is grown on nets in shallow coastal waters. The harvested seaweed is spread on bamboo screens to dry. Paper-thin, glossy sheets of nori make a mineral-rich wrap for rice, seafood, and vegetables in sushi.

Fig. 28 -20

Fig. 28 -20

Fig. 28 -21 (a) Ulva, or sea lettuce 2 cm (b) Caulerpa, an intertidal

Fig. 28 -21 (a) Ulva, or sea lettuce 2 cm (b) Caulerpa, an intertidal chlorophyte

Fig. 28 -21 a (a) Ulva, or sea lettuce 2 cm

Fig. 28 -21 a (a) Ulva, or sea lettuce 2 cm

Fig. 28 -21 b (b) Caulerpa, an intertidal chlorophyte

Fig. 28 -21 b (b) Caulerpa, an intertidal chlorophyte

Fig. 28 -22 -1 Flagella 1 µm Cell wall Nucleus Zoospore ASEXUAL REPRODUCTION Cross

Fig. 28 -22 -1 Flagella 1 µm Cell wall Nucleus Zoospore ASEXUAL REPRODUCTION Cross section of cup-shaped chloroplast Key Haploid (n) Diploid (2 n) Mature cell (n)

Fig. 28 -22 -2 Flagella – 1 µm Cell wall + Gamete + (n)

Fig. 28 -22 -2 Flagella – 1 µm Cell wall + Gamete + (n) Nucleus Zoospore ASEXUAL REPRODUCTION Cross section of cup-shaped chloroplast Key Haploid (n) Diploid (2 n) Mature cell (n) – FERTILIZATION SEXUAL REPRODUCTION MEIOSIS Zygote (2 n)

Fig. 28 -UN 5 Excavata Chromalveolata Rhizaria Archaeplastida Amoebozoans Fungi Choanoflagellates Animals Unikonta Nucleariids

Fig. 28 -UN 5 Excavata Chromalveolata Rhizaria Archaeplastida Amoebozoans Fungi Choanoflagellates Animals Unikonta Nucleariids

Fig. 28 -23 RESULTS Choanoflagellates Animals Unikonta Fungi Common ancestor of all eukaryotes Amoebozoans

Fig. 28 -23 RESULTS Choanoflagellates Animals Unikonta Fungi Common ancestor of all eukaryotes Amoebozoans Diplomonads Excavata Euglenozoans Alveolates Chromalveolata Stramenopiles DHFR-TS gene fusion Rhizarians Rhizaria Red algae Green algae Plants Archaeplastida

Fig. 28 -24 -1 4 cm Feeding plasmodium Mature plasmodium (preparing to fruit) Young

Fig. 28 -24 -1 4 cm Feeding plasmodium Mature plasmodium (preparing to fruit) Young sporangium Mature sporangium 1 mm Stalk Key Haploid (n) Diploid (2 n)

Fig. 28 -24 -2 4 cm Feeding plasmodium Mature plasmodium (preparing to fruit) Flagellated

Fig. 28 -24 -2 4 cm Feeding plasmodium Mature plasmodium (preparing to fruit) Flagellated cells (n) Young sporangium Amoeboid cells (n) Germinating spore Mature sporangium Spores (n) MEIOSIS 1 mm Stalk Key Haploid (n) Diploid (2 n)

Fig. 28 -24 -3 4 cm FERTILIZATION Feeding plasmodium Zygote (2 n) Mature plasmodium

Fig. 28 -24 -3 4 cm FERTILIZATION Feeding plasmodium Zygote (2 n) Mature plasmodium (preparing to fruit) Flagellated cells (n) Young sporangium Amoeboid cells (n) Germinating spore Mature sporangium Spores (n) MEIOSIS 1 mm Stalk Key Haploid (n) Diploid (2 n)

Fig. 28 -25 -1 Spores (n) Emerging amoeba (n) Solitary amoebas (feeding stage) (n)

Fig. 28 -25 -1 Spores (n) Emerging amoeba (n) Solitary amoebas (feeding stage) (n) 600 µm Fruiting bodies (n) ASEXUAL REPRODUCTION Aggregated amoebas Migrating aggregate Key 200 µm Haploid (n) Diploid (2 n)

Fig. 28 -25 -2 Spores (n) FERTILIZATION Emerging amoeba (n) Zygote (2 n) SEXUAL

Fig. 28 -25 -2 Spores (n) FERTILIZATION Emerging amoeba (n) Zygote (2 n) SEXUAL REPRODUCTION Solitary amoebas (feeding stage) (n) 600 µm Fruiting bodies (n) MEIOSIS ASEXUAL REPRODUCTION Amoebas (n) Aggregated amoebas Migrating aggregate Key 200 µm Haploid (n) Diploid (2 n)

10 µm Fig. 28 -26

10 µm Fig. 28 -26

Fig. 28 -27 Key High risk Moderate risk Low risk Nurseries with P. ramorum

Fig. 28 -27 Key High risk Moderate risk Low risk Nurseries with P. ramorum infections (2004) on other host plants (such as rhododendron).

Fig. 28 -28 Other consumers Herbivorous plankton Carnivorous plankton Bacteria absorbed by Soluble organic

Fig. 28 -28 Other consumers Herbivorous plankton Carnivorous plankton Bacteria absorbed by Soluble organic matter Protistan producers secrete

Fig. 28 -UN 6

Fig. 28 -UN 6

Fig. 28 -UN 6 a

Fig. 28 -UN 6 a

Fig. 28 -UN 6 b

Fig. 28 -UN 6 b

Fig. 28 -UN 6 c

Fig. 28 -UN 6 c

Fig. 28 -UN 6 d

Fig. 28 -UN 6 d

Fig. 28 -UN 6 e

Fig. 28 -UN 6 e

Fig. 28 -UN 7

Fig. 28 -UN 7

Fig. 28 -UN 8

Fig. 28 -UN 8