Fig 25 1 Fig 25 2 Fig 25

  • Slides: 73
Download presentation
Fig. 25 -1

Fig. 25 -1

Fig. 25 -2

Fig. 25 -2

Fig. 25 -3 20 µm Glucose-phosphate Phosphatase Starch Phosphate (a) Simple reproduction by liposomes

Fig. 25 -3 20 µm Glucose-phosphate Phosphatase Starch Phosphate (a) Simple reproduction by liposomes Amylase Maltose (b) Simple metabolism

Fig. 25 -3 a 20 µm (a) Simple reproduction by liposomes

Fig. 25 -3 a 20 µm (a) Simple reproduction by liposomes

Fig. 25 -3 b Glucose-phosphate Phosphatase Starch Amylase Phosphate Maltose (b) Simple metabolism

Fig. 25 -3 b Glucose-phosphate Phosphatase Starch Amylase Phosphate Maltose (b) Simple metabolism

Fig. 25 -4 Rhomaleosaurus victor, a plesiosaur 100 million years ago Present Casts of

Fig. 25 -4 Rhomaleosaurus victor, a plesiosaur 100 million years ago Present Casts of ammonites 4. 5 cm Coccosteus cuspidatus 400 375 300 270 200 175 Dimetrodon Hallucigenia 1 cm 565 2. 5 cm 525 500 Dickinsonia costata Fossilized stromatolite 3, 500 1, 500 600 Stromatolites Tappania, a unicellular eukaryote

Fig. 25 -4 -1 Hallucigenia 1 cm 565 2. 5 cm 4. 5 cm

Fig. 25 -4 -1 Hallucigenia 1 cm 565 2. 5 cm 4. 5 cm 525 500 Dickinsonia costata Fossilized stromatolite 3, 500 1, 500 600 Stromatolites Tappania, a unicellular eukaryote

Fig. 25 -4 a-2 4. 5 cm 400 375 300 270 200 175 Dimetrodon

Fig. 25 -4 a-2 4. 5 cm 400 375 300 270 200 175 Dimetrodon Coccosteus cuspidatus Rhomaleosaurus victor, a plesiosaur 100 million years ago Present Casts of ammonites

Fig. 25 -4 b Rhomaleosaurus victor, a plesiosaur

Fig. 25 -4 b Rhomaleosaurus victor, a plesiosaur

Fig. 25 -4 c Dimetrodon

Fig. 25 -4 c Dimetrodon

Fig. 25 -4 d Casts of ammonites

Fig. 25 -4 d Casts of ammonites

Fig. 25 -4 e 4. 5 cm Coccosteus cuspidatus

Fig. 25 -4 e 4. 5 cm Coccosteus cuspidatus

Fig. 25 -4 f 1 cm Hallucigenia

Fig. 25 -4 f 1 cm Hallucigenia

Fig. 25 -4 g Dickinsonia costata 2. 5 cm

Fig. 25 -4 g Dickinsonia costata 2. 5 cm

Fig. 25 -4 h Tappania, a unicellular eukaryote

Fig. 25 -4 h Tappania, a unicellular eukaryote

Fig. 25 -4 i Stromatolites

Fig. 25 -4 i Stromatolites

Fig. 25 -4 j Fossilized stromatolite

Fig. 25 -4 j Fossilized stromatolite

Fraction of parent isotope remaining Fig. 25 -5 1/ 2 Remaining “parent” isotope 1

Fraction of parent isotope remaining Fig. 25 -5 1/ 2 Remaining “parent” isotope 1 Accumulating “daughter” isotope 1/ 4 1/ 3 2 Time (half-lives) 8 1/ 4 16

Fig. 25 -6 Synapsid (300 mya) Temporal fenestra Key Articular Quadrate Dentary Squamosal Therapsid

Fig. 25 -6 Synapsid (300 mya) Temporal fenestra Key Articular Quadrate Dentary Squamosal Therapsid (280 mya) Reptiles (including dinosaurs and birds) Temporal fenestra Very late cynodont (195 mya) Earlier cynodonts Later cynodont (220 mya) Therapsids Temporal fenestra Dimetrodon Synapsids Early cynodont (260 mya) EARLY TETRAPODS Very late cynodonts Mammals

Fig. 25 -6 -1 Synapsid (300 mya) Temporal fenestra Therapsid (280 mya) Temporal fenestra

Fig. 25 -6 -1 Synapsid (300 mya) Temporal fenestra Therapsid (280 mya) Temporal fenestra Key Articular Quadrate Dentary Squamosal

Fig. 25 -6 -2 Early cynodont (260 mya) Key Temporal fenestra Later cynodont (220

Fig. 25 -6 -2 Early cynodont (260 mya) Key Temporal fenestra Later cynodont (220 mya) Very late cynodont (195 mya) Articular Quadrate Dentary Squamosal

Fig. 25 -7 ic zo o le o. Mesc zoi Cenozoic Humans Pa Colonization

Fig. 25 -7 ic zo o le o. Mesc zoi Cenozoic Humans Pa Colonization of land Animals Origin of solar system and Earth 4 1 Proterozoic Bil lio ns of 2 Archaean Multicellular eukaryotes Single-celled eukaryotes o ag s ar 3 ye Atmospheric oxygen Prokaryotes

Fig. 25 -8

Fig. 25 -8

Fig. 25 -9 -1 Plasma membrane Cytoplasm Ancestral prokaryote DNA Endoplasmic reticulum Nuclear envelope

Fig. 25 -9 -1 Plasma membrane Cytoplasm Ancestral prokaryote DNA Endoplasmic reticulum Nuclear envelope Nucleus

Fig. 25 -9 -2 Aerobic heterotrophic prokaryote Mitochondrion Ancestral heterotrophic eukaryote

Fig. 25 -9 -2 Aerobic heterotrophic prokaryote Mitochondrion Ancestral heterotrophic eukaryote

Fig. 25 -9 -3 Photosynthetic prokaryote Mitochondrion Plastid Ancestral photosynthetic eukaryote

Fig. 25 -9 -3 Photosynthetic prokaryote Mitochondrion Plastid Ancestral photosynthetic eukaryote

Fig. 25 -9 -4 Plasma membrane Cytoplasm Ancestral prokaryote DNA Endoplasmic reticulum Nucleus Nuclear

Fig. 25 -9 -4 Plasma membrane Cytoplasm Ancestral prokaryote DNA Endoplasmic reticulum Nucleus Nuclear envelope Aerobic heterotrophic prokaryote Photosynthetic prokaryote Mitochondrion Ancestral heterotrophic eukaryote Mitochondrion Plastid Ancestral photosynthetic eukaryote

Early Paleozoic era (Cambrian period) 542 Late Proterozoic eon Sponges 500 Arthropods Molluscs Annelids

Early Paleozoic era (Cambrian period) 542 Late Proterozoic eon Sponges 500 Arthropods Molluscs Annelids Brachiopods Chordates Echinoderms Cnidarians Millions of years ago Fig. 25 -10

Fig. 25 -11 (a) Two-cell stage 150 µm (b) Later stage 200 µm

Fig. 25 -11 (a) Two-cell stage 150 µm (b) Later stage 200 µm

Fig. 25 -12 North American Plate Crust Juan de Fuca Plate Mantle Inner core

Fig. 25 -12 North American Plate Crust Juan de Fuca Plate Mantle Inner core (a) Cutaway view of Earth Caribbean Plate Philippine Plate Arabian Plate Indian Plate Cocos Plate Pacific Plate Outer core Eurasian Plate Nazca Plate South American Plate Scotia Plate (b) Major continental plates African Plate Antarctic Plate Australian Plate

Fig. 25 -12 a Crust Mantle Outer core Inner core (a) Cutaway view of

Fig. 25 -12 a Crust Mantle Outer core Inner core (a) Cutaway view of Earth

Fig. 25 -12 b North American Plate Juan de Fuca Plate Eurasian Plate Caribbean

Fig. 25 -12 b North American Plate Juan de Fuca Plate Eurasian Plate Caribbean Plate Philippine Plate Arabian Plate Indian Plate Cocos Plate Pacific Plate Nazca Plate South American Plate Scotia Plate (b) Major continental plates African Plate Antarctic Plate Australian Plate

Fig. 25 -13 Cenozoic Present N 65. 5 ica er m h. A t

Fig. 25 -13 Cenozoic Present N 65. 5 ica er m h. A t or Eurasia Africa India South America Madagascar ralia st 135 251 Mesozoic Laurasia Gon dwa na ea Paleozoic Millions of years ago Antarctica a ng Pa Au

Fig. 25 -13 a Cenozoic Millions of years ago Present 65. 5 a ic

Fig. 25 -13 a Cenozoic Millions of years ago Present 65. 5 a ic er No Am h t r Eurasia Africa South America India Madagascar Antarctica A tra us lia

Fig. 25 -13 b 251 Gon dwa ea Paleozoic Millions of years ago 135

Fig. 25 -13 b 251 Gon dwa ea Paleozoic Millions of years ago 135 Mesozoic Laurasia Pa a ng na

Fig. 25 -14 800 700 600 15 500 400 10 300 200 5 100

Fig. 25 -14 800 700 600 15 500 400 10 300 200 5 100 0 Era Period 542 E O Paleozoic S D 488 444 416 359 C Tr P 299 251 Mesozoic C J 200 145 Time (millions of years ago) Cenozoic P 65. 5 N 0 0 Number of families: Total extinction rate (families per million years): 20

Fig. 25 -15 NORTH AMERICA Yucatán Peninsula Chicxulub crater

Fig. 25 -15 NORTH AMERICA Yucatán Peninsula Chicxulub crater

Predator genera (percentage of marine genera) Fig. 25 -16 50 40 30 20 10

Predator genera (percentage of marine genera) Fig. 25 -16 50 40 30 20 10 0 Paleozoic Mesozoic Era D C P C E O S J Tr Period 359 488 444 416 542 299 251 200 145 Time (millions of years ago) Cenozoic P 65. 5 N 0

Fig. 25 -17 Ancestral mammal Monotremes (5 species) ANCESTRAL CYNODONT Marsupials (324 species) Eutherians

Fig. 25 -17 Ancestral mammal Monotremes (5 species) ANCESTRAL CYNODONT Marsupials (324 species) Eutherians (placental mammals; 5, 010 species) 250 200 150 Millions of years ago 50 0

Fig. 25 -18 Close North American relative, the tarweed Carlquistia muirii Dubautia laxa KAUAI

Fig. 25 -18 Close North American relative, the tarweed Carlquistia muirii Dubautia laxa KAUAI 5. 1 million years MOLOKAI OAHU 3. 7 LANAI million years 1. 3 MAUI million years Argyroxiphium sandwicense HAWAII 0. 4 million years Dubautia waialealae Dubautia scabra Dubautia linearis

Fig. 25 -18 a KAUAI 5. 1 million years MOLOKAI OAHU 3. 7 million

Fig. 25 -18 a KAUAI 5. 1 million years MOLOKAI OAHU 3. 7 million years 1. 3 million MAUI years LANAI HAWAII 0. 4 million years

Fig. 25 -18 b Close North American relative, the tarweed Carlquistia muirii

Fig. 25 -18 b Close North American relative, the tarweed Carlquistia muirii

Fig. 25 -18 c Dubautia waialealae

Fig. 25 -18 c Dubautia waialealae

Fig. 25 -18 d Dubautia laxa

Fig. 25 -18 d Dubautia laxa

Fig. 25 -18 e Dubautia scabra

Fig. 25 -18 e Dubautia scabra

Fig. 25 -18 f Argyroxiphium sandwicense

Fig. 25 -18 f Argyroxiphium sandwicense

Fig. 25 -18 g Dubautia linearis

Fig. 25 -18 g Dubautia linearis

Fig. 25 -19 Newborn 2 5 Age (years) 15 Adult (a) Differential growth rates

Fig. 25 -19 Newborn 2 5 Age (years) 15 Adult (a) Differential growth rates in a human Chimpanzee fetus Chimpanzee adult Human fetus Human adult (b) Comparison of chimpanzee and human skull growth

Fig. 25 -19 a Newborn 2 5 Age (years) 15 (a) Differential growth rates

Fig. 25 -19 a Newborn 2 5 Age (years) 15 (a) Differential growth rates in a human Adult

Fig. 25 -19 b Chimpanzee fetus Chimpanzee adult Human fetus Human adult (b) Comparison

Fig. 25 -19 b Chimpanzee fetus Chimpanzee adult Human fetus Human adult (b) Comparison of chimpanzee and human skull growth

Fig. 25 -20 Gills

Fig. 25 -20 Gills

Fig. 25 -21 Hypothetical vertebrate ancestor (invertebrate) with a single Hox cluster First Hox

Fig. 25 -21 Hypothetical vertebrate ancestor (invertebrate) with a single Hox cluster First Hox duplication Hypothetical early vertebrates (jawless) with two Hox clusters Vertebrates (with jaws) with four Hox clusters Second Hox duplication

Fig. 25 -22 Hox gene 6 Hox gene 7 Hox gene 8 Ubx About

Fig. 25 -22 Hox gene 6 Hox gene 7 Hox gene 8 Ubx About 400 mya Drosophila Artemia

Fig. 25 -23 RESULTS Test of Hypothesis A: Differences in the coding sequence of

Fig. 25 -23 RESULTS Test of Hypothesis A: Differences in the coding sequence of the Pitx 1 gene? Result: No Test of Hypothesis B: Differences in the regulation of expression of Pitx 1 ? Result: Yes Marine stickleback embryo Close-up of mouth Close-up of ventral surface The 283 amino acids of the Pitx 1 protein are identical. Pitx 1 is expressed in the ventral spine and mouth regions of developing marine sticklebacks but only in the mouth region of developing lake stickbacks. Lake stickleback embryo

Fig. 25 -23 a Marine stickleback embryo Close-up of mouth Close-up of ventral surface

Fig. 25 -23 a Marine stickleback embryo Close-up of mouth Close-up of ventral surface Lake stickleback embryo

Fig. 25 -24 Pigmented cells (photoreceptors) Epithelium Nerve fibers (a) Patch of pigmented cells

Fig. 25 -24 Pigmented cells (photoreceptors) Epithelium Nerve fibers (a) Patch of pigmented cells Fluid-filled cavity Epithelium Optic nerve Nerve fibers (b) Eyecup Cellular mass (lens) Pigmented layer (retina) (c) Pinhole camera-type eye Cornea Optic nerve (d) Eye with primitive lens Cornea Lens Retina Optic nerve (e) Complex camera-type eye

Fig. 25 -25 Recent (11, 500 ya) Equus Pleistocene (1. 8 mya) Hippidion and

Fig. 25 -25 Recent (11, 500 ya) Equus Pleistocene (1. 8 mya) Hippidion and other genera Nannippus Pliohippus Pliocene (5. 3 mya) Hipparion Neohipparion Sinohippus Megahippus Callippus Archaeohippus Miocene (23 mya) Merychippus Hypohippus Anchitherium Parahippus Miohippus Oligocene (33. 9 mya) Mesohippus Paleotherium Epihippus Propalaeotherium Eocene (55. 8 mya) Pachynolophus Orohippus Key Hyracotherium Grazers Browsers

Fig. 25 -25 a Miohippus Oligocene (33. 9 mya) Mesohippus Paleotherium Epihippus Propalaeotherium Eocene

Fig. 25 -25 a Miohippus Oligocene (33. 9 mya) Mesohippus Paleotherium Epihippus Propalaeotherium Eocene (55. 8 mya) Pachynolophus Orohippus Key Hyracotherium Grazers Browsers

Fig. 25 -25 b Recent (11, 500 ya) Equus Pleistocene (1. 8 mya) Hippidion

Fig. 25 -25 b Recent (11, 500 ya) Equus Pleistocene (1. 8 mya) Hippidion and other genera Nannippus Pliohippus Pliocene (5. 3 mya) Hipparion Neohipparion Sinohippus Megahippus Callippus Archaeohippus Miocene (23 mya) Merychippus Anchitherium Hypohippus Parahippus

Table 25 -1

Table 25 -1

Table 25 -1 a

Table 25 -1 a

Table 25 -1 b

Table 25 -1 b

Fig 25 -UN 1 Cryolophosaurus

Fig 25 -UN 1 Cryolophosaurus

Fig 25 -UN 2 1 4 s on lli Bi of 2 o g

Fig 25 -UN 2 1 4 s on lli Bi of 2 o g a s r a e y 3 Prokaryotes

Fig 25 -UN 3 1 s on lli Bi 4 go of 2 a

Fig 25 -UN 3 1 s on lli Bi 4 go of 2 a a e y rs 3 Atmospheric oxygen

Fig 25 -UN 4 1 4 s on lli Bi Singlecelled eukaryotes of 2

Fig 25 -UN 4 1 4 s on lli Bi Singlecelled eukaryotes of 2 o g a s r a e y 3

Fig 25 -UN 5 1 4 s on lli Bi Multicellular eukaryotes of 2

Fig 25 -UN 5 1 4 s on lli Bi Multicellular eukaryotes of 2 o g a s r a e y 3

Fig 25 -UN 6 Animals 1 4 s on lli Bi of 2 o

Fig 25 -UN 6 Animals 1 4 s on lli Bi of 2 o g a rs a ye 3

Fig 25 -UN 7 Colonization of land 1 s on lli Bi of 2

Fig 25 -UN 7 Colonization of land 1 s on lli Bi of 2 s r a e y 3 4 o g a

Fig 25 -UN 8 1. 2 bya: First multicellular eukaryotes 2. 1 bya: First

Fig 25 -UN 8 1. 2 bya: First multicellular eukaryotes 2. 1 bya: First eukaryotes (single-celled) 535– 525 mya: Cambrian explosion (great increase in diversity of animal forms) 500 mya: Colonization of land by fungi, plants and animals 500 Present Millions of years ago (mya) 1, 000 1, 500 2, 000 2, 500 3, 000 3, 500 4, 000 3. 5 billion years ago (bya): First prokaryotes (single-celled)

Fig 25 -UN 9 - Cenozoic o Mesc zoi c i zo o le

Fig 25 -UN 9 - Cenozoic o Mesc zoi c i zo o le Pa Origin of solar system and Earth 1 4 Proterozoic Archaean Bil go lio a ns rs a of ye 3 2

Fig 25 -UN 10 Flies and fleas Caddisflies Herbivory Moths and butterflies

Fig 25 -UN 10 Flies and fleas Caddisflies Herbivory Moths and butterflies

Fig 25 -UN 11 oic o. Mesc zoi Cenozoic z leo Pa Origin of

Fig 25 -UN 11 oic o. Mesc zoi Cenozoic z leo Pa Origin of solar system and Earth 4 1 Proterozoic Bil lio ns of 2 Archaean ye ar go a s 3