Fenomeni di Trasporto II Trasporto di calore Introduzione

  • Slides: 96
Download presentation
Fenomeni di Trasporto II - Trasporto di calore -Introduzione Materiale didattico Bird Stewart Lightfoot

Fenomeni di Trasporto II - Trasporto di calore -Introduzione Materiale didattico Bird Stewart Lightfoot Transport phenomena John Wiley & Sons, Inc S. Middleman “An Introduction to mass and heat transfer” John Wiley & Sons, Inc. S. Middleman “An Introduction to Fluid Dynamics” John Wiley & Sons, Inc. Lucidi ed esercizi sul sito web www. docenti. unina. it (Fabio Murena) 1

Fenomeni di Trasporto II - Trasporto di calore -Introduzione I meccanismi di trasporto del

Fenomeni di Trasporto II - Trasporto di calore -Introduzione I meccanismi di trasporto del calore Il trasporto di calore è sempre associato ad una differenza di temperatura e va (senza lavoro esterno) dalla T maggiore verso la T minore. Esistono tre meccanismi di trasporto di calore 1 Conduzione (trasporto attraverso solidi o fluidi fermi) trasmissione attraverso urti molecolari senza un trasporto netto di materia 2 Convezione (trasporto all’interno di una fase fluida in moto o tra un solido ed un fluido in moto) è associato ad un trasporto netto di materia 3 Irraggiamento (trasporto tra superfici che si “vedono” ma non sono a contatto) avviene attraverso l’emissione di radiazioni che attraversano lo spazio presente fra i corpi 2

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Dimensioni delle grandezze di

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Dimensioni delle grandezze di interesse Quello che vogliamo calcolare in genere è Q la portata termica o potenza termica trasmessa per conduzione Q = Potenza trasmessa q = Flusso termico (= potenza termica per unità di superficie) q = Q/S oppure Q=q. S (S= superficie) Quindi le dimensioni sono Q = energia( lavoro) x tempo-1 = forza x spostamento x tempo-1 = (MLt--2) (L)(t-1) = ML 2 t— 3 q = energia( lavoro) x tempo-1 x superficie -1 = energia( lavoro) x tempo-1 x lunghezza -2 = ML 2 t-3 L-2 = Mt-3 3

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Unità di misura delle

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Unità di misura delle grandezze di interesse Le unità di misura sono: SI cgs altro Q [=] W J s-1 erg s-1 cal s-1 (kcal hr-1) q [=] W m-2 J s-1 m-2 erg s-1 cm-2 cal s-1 m-2 (kcal hr-1 m-2) Fattori di conversione W erg s-1 x 107 W m-2 erg s-1 cm-2 x 103 W cal s-1 x 0. 239 W m-2 cal s-1 cm-2 x 2. 39 10 -5 relazioni inverse cal s-1 W x 4. 185 4

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Legge di Fourier qx

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Legge di Fourier qx = flusso termico nella direzione x (portata di calore o energia per unità di superficie) d. T/dx = gradiente termico k = conducibilità termica (coefficiente di proporzionalità) z La portata di calore o potenza termica trasmessa è x S = superficie ortogonale a x y 5

Fenomeni di Trasporto II - Trasporto di calore – Introduzione Conduzione attraverso una superficie

Fenomeni di Trasporto II - Trasporto di calore – Introduzione Conduzione attraverso una superficie piana Il flusso termico può avvenire nelle tre direzioni. In un mezzo isotropico è: Coordinate cartesiane in forma vettoriale 6

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Conducibilità termica: dimensioni e

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Conducibilità termica: dimensioni e unità di misura Le dimensioni della conducibilità termica k sono: k [=] [energia / (tempo x superficie) ]x (lunghezza /temperatura) k [=] M L t-3 T-1 Le unità di misura della conducibilità termica k sono: SI k [=] Wm-1 K-1 cgs altro erg s-1 cm-1 K-1 Kcal h-1 m-1 K-1 Fattori di conversione Wm-1 K-1 Kcal h-1 m-1 K-1 moltiplicare x 0. 860 Kcal h-1 m-1 K-1 Wm-1 K-1 moltiplicare x 1. 163 7

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Valutazione di k k

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Valutazione di k k = f (materiale, temperatura, pressione (gas)) materiali isolanti ( k basso) materiali conduttori ( k alto) I valori di k si trovano da: 1) Tabelle Kreith (sito web) 2) Tabelle Perry 7 a (2 -367 ; 2 -370 ; da 2 -373 a 2 -380) Diffusività termica [=] L 2/t ad esempio cm 2/s [≡] = / viscosità cinematica 8

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Ordine di grandezza della

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Ordine di grandezza della conducibilità termica k W/m °C Gas a P atmosferica 0. 007 – 0. 17 Materiali isolanti 0. 034 – 0. 21 Liquidi non metallici 0. 087 – 0. 7 Solidi non metallici (mattoni, cemento …) 0. 034 – 2. 3 Leghe metalliche 14 – 420 9

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Bilancio di energia 10

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Bilancio di energia 10

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Scrittura del bilancio di

Fenomeni di Trasporto II - Trasporto di calore - Introduzione Scrittura del bilancio di energia per diverse geometrie cartesiana cilindrica sferica • Pareti piane • Pareti cilindriche (tubi) • Pareti sferiche (serbatoi) • Lastre • Parallelepipedi • Cilindri (cavi, fili, barre) • Catalizzatori 11

Fenomeni di Trasporto II - Trasporto di calore – Conduzione Monodimensionale Stazionaria Geometria piana

Fenomeni di Trasporto II - Trasporto di calore – Conduzione Monodimensionale Stazionaria Geometria piana z P Coordinate cartesiane z y y x x 12

Fenomeni di Trasporto II - Trasporto di calore – Conduzione Monodimensionale Stazionaria Conduzione attraverso

Fenomeni di Trasporto II - Trasporto di calore – Conduzione Monodimensionale Stazionaria Conduzione attraverso una superficie piana In genere il flusso termico può avvenire in tutte le direzioni. In un mezzo isotropico (k indipendente dalla direzione) e geometria cartesiana sarà quindi: in forma vettoriale Flusso monodirezionale (T costante con y e z) x y 13

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Scrittura del

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Scrittura del bilancio di energia in geometria piana Occorre prima definire un volume di controllo e identificarne le superfici che lo delimitano. Il bilancio si scrive sul volume di controllo I termini di un bilancio sono in genere: IN – OUT + GEN = ACC IN = velocità di ingresso energia termica OUT = velocità di uscita energia termica GEN = velocità di generazione energia termica ACC = velocità di accumulo energia termica Termini per unità di tempo ≡ velocità Oppure: IN = energia termica entrata tra t e t+ t OUT = energia termica uscita tra t e t+ t GEN = energia termica generata nel volume di controllo nell’intervallo t ACC = energia termica nel volume di controllo al tempo t+ t – en. termica al tempo t Si dividono poi tutti i termini per t e si fa tendere t 0 14

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Scelta del

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Scelta del volume di controllo Il volume di controllo deve essere scelto in modo tale che tutte le grandezze al suo interno siano uniformi. Ossia assumano il medesimo valore in tutto il volume Quando all’interno di un materiale o corpo le grandezze variano nello spazio (variano con le coordinate spaziali) allora è necessario definire un volume di controllo differenziale. Un volume di controllo differenziale può avere da una a tre coordinate differenziali. Si prendono differenziali solo quelle dimensioni del volume di controllo strettamente necessarie (nelle quali variano le grandezze di interesse) le altre vengono prese pari alla dimensione dell’intero volume in oggetto 15

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Scelta del

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Scelta del volume di controllo : esempio geometria cartesiana T varia con y T varia con z d. V=WLdz d. V=LHdy z z dz H L x y W y x dy T varia con x, y, z d. V = dxdydz 16

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Bilancio di

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Bilancio di energia in parete piana (geometria cartesiana) BILANCIO IN – OUT + GEN = ACC Ipotesi: flusso solo nella direzione x; GEN=0 ; ACC=0; k costante con T VOLUME DI CONTROLLO (S • dx) (volume differenziale) T y T 0 qx TL 0 x x+dx x B. C. L 17

Fenomeni di Trasporto II – Trasporto di calore -Conduzione Monodimensionale Stazionaria Bilancio di energia

Fenomeni di Trasporto II – Trasporto di calore -Conduzione Monodimensionale Stazionaria Bilancio di energia in parete piana T y T 0 qx TL 0 x x=0 x=L C 2 = T 0 C 1 =(TL-T 0)/L x+dx x=L Il profilo di T è lineare 18

Fenomeni di Trasporto II - Trasporto di calore -Conduzione Monodimensionale Stazionaria Bilancio di energia

Fenomeni di Trasporto II - Trasporto di calore -Conduzione Monodimensionale Stazionaria Bilancio di energia in parete piana T y Il profilo di T è lineare T 0 TL x x+dx La potenza termica trasmessa è quindi x L Ipotesi: GEN=0; ACC=0; k= costante; sezione costante 19

Fenomeni di Trasporto II - Trasporto di calore -Conduzione Monodimensionale Stazionaria Geometria cilindrica P

Fenomeni di Trasporto II - Trasporto di calore -Conduzione Monodimensionale Stazionaria Geometria cilindrica P Coordinate cilindriche z z r x y 20

TCM - Trasporto di calore – Conduzione Componenti del flusso in coordinate cilindriche z

TCM - Trasporto di calore – Conduzione Componenti del flusso in coordinate cilindriche z qz Q P q qr q r 21

TCM - Trasporto di calore – Conduzione Geom. Cilindrica: come si ricava la componente

TCM - Trasporto di calore – Conduzione Geom. Cilindrica: come si ricava la componente q del flusso d 22

Fenomeni di Trasporto II - Trasporto di calore -Conduzione Monodimensionale Stazionaria Conduzione attraverso una

Fenomeni di Trasporto II - Trasporto di calore -Conduzione Monodimensionale Stazionaria Conduzione attraverso una superficie cilindrica Anche in questo caso in forma vettoriale il flusso di calore è dato da: In caso di conduzione solo lungo r (la T varia solo con il raggio) N. B S = 2 prz 23

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria z R

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria z R 1 Bilancio di energia in parete cilindrica IN –OUT+GEN=ACC R 0 r r+dr hp: conduzione solo radiale, Gen=0; Acc=0; k=cost. Volume di controllo H y costante x r 24

Fenomeni di Trasporto II - Trasporto di calore -Conduzione Monodimensionale Stazionaria Bilancio di energia

Fenomeni di Trasporto II - Trasporto di calore -Conduzione Monodimensionale Stazionaria Bilancio di energia in parete cilindrica z B. C. H r+dr r R 0 R 1 r N. B. Il profilo di temperatura è logaritmico Poichè deve essere costante il prodotto rd. T/dr si ha un gradiente maggiore in corrispondenza della superficie cilindrica interna (raggio minore) 25

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Geometria sferica

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Geometria sferica z P r Coordinate sferiche y x 26

TCM - Trasporto di calore – Conduzione Componenti del flusso in geometria sferica q

TCM - Trasporto di calore – Conduzione Componenti del flusso in geometria sferica q z q P r qr y x 27

TCM - Trasporto di calore – Conduzione Geom. sferica: come si ricava la componente

TCM - Trasporto di calore – Conduzione Geom. sferica: come si ricava la componente f del flusso z P r sen r y dl=rsen df d x dl 28

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Conduzione attraverso

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Conduzione attraverso una superficie sferica Anche in questo caso in forma vettoriale il flusso di calore è dato da: In caso di conduzione solo lungo r (la T varia solo con il raggio) y r x 29

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Bilancio di

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Bilancio di energia in parete sferica (guscio sferico) R 0 R 1 IN –OUT+GEN=ACC hp: conduzione solo radiale, Gen=0; Acc=0; k=cost Volume di controllo = r 30

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Bilanci di

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Bilanci di energia: riepilogo hp: conduzione monodimensionale, Gen=0; Acc=0; k=cost Parete piana Parete cilindrica Parete sferica 31

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Conduzione: approssimazione

Fenomeni di Trasporto II - Trasporto di calore - Conduzione Monodimensionale Stazionaria Conduzione: approssimazione a lastra piana hp: conduzione monodimensionale, Gen=0; Acc=0; k=cost Se assimiliamo una parete cilindrica o sferica a lastra piana si commette un errore tanto più piccolo quanto più R 1 R 0 Sol. esatta per parete cilindrica approssimazione a lastra piana rapporto esatta/approx. (R 1 -R 0)/R 0 ln(R 1/R 0) Sol. esatta per parete sferica approssimazione a lastra piana rapporto esatta/approx. R 1/R 0 32

Fenomeni di Trasporto II - Trasporto di calore – Conduzione K(T) Bilanci di energia:

Fenomeni di Trasporto II - Trasporto di calore – Conduzione K(T) Bilanci di energia: effetto della variazione della conducibilità termica con T 33

Fenomeni di Trasporto II - Trasporto di calore – Conduzione K(T) Conducibilità termica variabile

Fenomeni di Trasporto II - Trasporto di calore – Conduzione K(T) Conducibilità termica variabile con T La conducibilità varia in genere con la temperatura in modo però diverso tra le diverse sostanze. Per i solidi ed i liquidi k può crescere o decrescere con T Per i gas ideali (Pr 0 Tr >> 1) k cresce con la temperatura (Fig. 8. 2 -1 Bird) così come la viscosità. Quando non è possibile considerare k costante è sufficiente, in molti casi pratici, assumere una dipendenza lineare 34

Fenomeni di Trasporto II - Trasporto di calore – Conduzione K(T) Conducibilità termica variabile

Fenomeni di Trasporto II - Trasporto di calore – Conduzione K(T) Conducibilità termica variabile con T Ipotesi: ACC=0; GEN=0; k varia linearmente con T Qx H W L x k a T media km= k a T media 35

Fenomeni di Trasporto II - Trasporto di calore – Conduzione K(T) Conducibilità termica variabile

Fenomeni di Trasporto II - Trasporto di calore – Conduzione K(T) Conducibilità termica variabile con T: parete cilindrica z Ipotesi: Acc=0; GEN=0 Qr H y x r km= k a T media 36

Fenomeni di Trasporto II - Trasporto di calore – Conduzione K(T) Conducibilità termica variabile

Fenomeni di Trasporto II - Trasporto di calore – Conduzione K(T) Conducibilità termica variabile con T Conclusioni Nel calcolo della potenza termica Q se k dipende da T si può calcolare Q con le stesse formule ottenute per k costante utilizzando il valore di k valutata alla T media 37

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Bilanci di

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Bilanci di energia con generazione di calore 38

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con generazione di calore GEN≠ 0: lastra piana Ipotesi: lastra piana; k costante flusso monodimensionale stazionario GEN≠ 0 ed omogenea IN-OUT+GEN=0 Generazione specifica Profilo di T non lineare 39

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con generazione di calore GEN≠ 0 Lastra piana x 0 0 x=2 B x x=0 x=+/-B verifica 40

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con generazione di calore GEN≠ 0: lastra piana Per simmetria la T massima/minima si ha sul piano di simmetria della lastra. La simmetria dipende dalla imposizione della BC della stessa T sulle 2 facce e dalla omogeneità della generazione. x 41

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con generazione di calore GEN≠ 0 T z Lastra piana con generazione uniforme Profilo di T parabolico x = -B 0 x=B x 42

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con generazione di calore GEN≠ 0 Ipotesi: cilindro pieno, flusso radiale (monodimensionale stazionario) GEN≠ 0 ed uniforme z Qr H y x r Profilo di T parabolico 43

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Sistemi con generazione di calore GEN≠ 0 T z Cilindro con generazione uniforme Tr=0 r 0 R TR r 44

Fenomeni di Trasporto II - Trasporto di calore per conduzione in caso di resistenze

Fenomeni di Trasporto II - Trasporto di calore per conduzione in caso di resistenze in serie: parete composta 45

Fenomeni di Trasporto II – Conduzione attraverso pareti composte T 0 T 1 T

Fenomeni di Trasporto II – Conduzione attraverso pareti composte T 0 T 1 T 2 T 3 In genere sono note le T alle estremità (T 0 e T 3) e si vuole 46 calcolare la potenza termica trasmessa

Fenomeni di Trasporto II - Trasporto di calore Conduzione attraverso pareti composte La potenza

Fenomeni di Trasporto II - Trasporto di calore Conduzione attraverso pareti composte La potenza termica trasmessa attraverso ogni stadio è In condizioni stazionarie In ogni equazione abbiamo almeno 2 incognite! 47

Fenomeni di Trasporto II - Trasporto di calore Conduzione attraverso pareti composte Operiamo in

Fenomeni di Trasporto II - Trasporto di calore Conduzione attraverso pareti composte Operiamo in modo da eliminare dall’equazione le T intermedie incognite A secondo membro si lasciano le sole forze spingenti Sommando membro a membro, a destra si annullano le T intermedie Questa equazione ha una sola incognita Q! 48

Fenomeni di Trasporto II - Trasporto di calore: pareti composte Abbiamo ottenuto Per cui

Fenomeni di Trasporto II - Trasporto di calore: pareti composte Abbiamo ottenuto Per cui risulta: Si definisce un coefficiente globale di scambio U 49

Fenomeni di Trasporto II - Trasporto di calore: pareti composte Abbiamo definito U ha

Fenomeni di Trasporto II - Trasporto di calore: pareti composte Abbiamo definito U ha le stesse dimensioni di k/L Sommatoria delle resistenze 50

Fenomeni di Trasporto II - Trasporto di calore Resistenze in serie Caso A Caso

Fenomeni di Trasporto II - Trasporto di calore Resistenze in serie Caso A Caso B Caso C Tutte le resistenze sono dello stesso ordine di grandezza Una resistenza è trascurabile se Una resistenza è controllante se 51

Fenomeni di Trasporto II - Trasporto di calore: resistenze in serie - parete cilindrica

Fenomeni di Trasporto II - Trasporto di calore: resistenze in serie - parete cilindrica Si può definire più di un coefficiente U 52

Fenomeni di Trasporto II - Trasporto di calore: resistenze in serie - parete sferica

Fenomeni di Trasporto II - Trasporto di calore: resistenze in serie - parete sferica r 3 r 2 r 1 r 0 53

Fenomeni di Trasporto II - Trasporto di calore Transitorio termico 54

Fenomeni di Trasporto II - Trasporto di calore Transitorio termico 54

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio - lastra

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio - lastra piana Ipotesi: lastra piana; k costante flusso monodimensionale GEN=0; ACC≠ 0 IN-OUT=ACC L’energia termica al tempo t la scriviamo come L’accumulo sarà Per lastra piana flusso monodimensionale lungo x e cp costanti 55

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio - lastra

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio - lastra piana Il bilancio è quindi ACC=IN-OUT Si dividono entrambi i membri per 56

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio - lastra

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio - lastra piana ottenendo Equazione della conduzione monodimensionale in transitorio Diffusività termica 57

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio - lastra

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio - lastra piana Bilancio di energia Le condizioni al contorno che ipotizziamo sono: t = 0 T = T 0 uniforme x = 0 d. T/dx = 0 (simmetria) x = +/- B T=T 1 Profilo al tempo t in caso di accumulo negativo T 0 In seguito utilizzeremo altre BC ! B= semi spessore della lastra 58

Fenomeni di Trasporto - Trasporto di calore_transitorio Lastra piana: transitorio soluzione analitica Un corpo

Fenomeni di Trasporto - Trasporto di calore_transitorio Lastra piana: transitorio soluzione analitica Un corpo solido che occupa lo spazio compreso tra y=-b e y=+b si trova alla T=T 0 Al tempo t=0 le superfici a y=-b e y=b vengono portate a T 1 e mantenute a questa T per t>0 Si vuole conoscere il profilo di T per t>0 e il flusso a y=+b e -b Si introducono le variabili L’equazione diventa La soluzione è 59

Fenomeni di Trasporto - Trasporto di calore_transitorio Lastra piana soluzione analitica L’equazione converge rapidamente

Fenomeni di Trasporto - Trasporto di calore_transitorio Lastra piana soluzione analitica L’equazione converge rapidamente per valori elevati di converge lentamente per valori bassi di per “tempi” brevi esiste una soluzione analitica molto più semplice: “spazio semi infinito 60

Fenomeni di Trasporto II - Trasporto di calore Conduzione in transitorio - Carte generalizzate

Fenomeni di Trasporto II - Trasporto di calore Conduzione in transitorio - Carte generalizzate Bird lastra piana Fig. 11. 1 -1 Tempo adim. T 1=T sup esterna T 0=T(t=0) Profili di T (adimensionale) nella lastra coordinata adimensionale y = 0 centro della lastra y = b superficie lastra 61

Fenomeni di Trasporto II - Trasporto di calore Conduzione in transitorio - soluzioni per

Fenomeni di Trasporto II - Trasporto di calore Conduzione in transitorio - soluzioni per altre geometria Per le altre geometrie (cilindro e sfera) esistono • soluzioni analitiche • carte generalizzate analoghe a quelle appena viste per lastra piana 62

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: Spazio semi

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: Spazio semi infinito y Bilancio di energia t Spazio semi infinito t 0 y=0 y T = T 0 T = T 1 T = T 0 per ogni y per ogni t >0 T 0 x T T 1 Si risolve con il metodo di combinazione delle variabili 63

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: spazio semi

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: spazio semi infinito Introducendo le variabili Metodo di combinazione delle variabili Le condizioni al contorno t 0 T = T 0 y=0 T = T 1 y T = T 0 per ogni y per ogni t >0 h = 0 h= =1 =0 si assume che sia si ricava che l’equazione diventa 64

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: spazio semi

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: spazio semi infinito La soluzione è y t T 0 T 1 x T La funzione erf è tabellata o calcolata da calcolatrici e software 65

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: spazio seminfinito

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: spazio seminfinito soluzione valida in spazi finiti per “t 0” per =2 1 risulta erf =0. 995 erf 0 1 2 y Si può quindi definire uno spessore d per h=2 T 1 x T 66

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: spazio seminfinito

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: spazio seminfinito soluzione valida in spazi finiti per “t 0” Spessore di penetrazione y y > d(t) d(t 2) T non è cambiata d(t 1) y < d(t) T è cambiata T 0 T 1 T 67

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: applicazione a

Fenomeni di Trasporto II - Trasporto di calore in solidi in transitorio: applicazione a lastra piana finita T 1 x T 0 B t 2 t 1 t 0 t = 0 x = +/-B x=0 T = T 0 per ogni x T = T 1 per ogni t >0 d. T/dx=0 per ogni t >0 Profili di T a diversi istanti di tempo Se al tempo t è < B la soluzione vale anche per lastra piana finita per cilindro e sfera deve essere almeno < R/2 La soluzione quindi vale anche per spazi finiti ma per “tempi brevi” 68

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Metodi per

Fenomeni di Trasporto II - Trasporto di calore – Conduzione con Generazione Metodi per la stima della conducibilità termica 69

Gas: dipendenza della conducibilità termica da Te. P Fenomeni di Trasporto II - Trasporto

Gas: dipendenza della conducibilità termica da Te. P Fenomeni di Trasporto II - Trasporto di calore – Equazione energia Per sostanze monoatomiche è stato ricavato il grafico in Fig. 9. 2 -1 Bird Si osserva che per un gas a bassa densità ossia P 0 e quindi Pr 0 (gas ideali) la conducibilità cresce con la temperatura 70

TCM - Trasporto di calore – Conduzione Dipendenza della conducibilità termica da T e

TCM - Trasporto di calore – Conduzione Dipendenza della conducibilità termica da T e P Utilizzo del grafico 9. 2 -1 1 se conosco il valore di kc utilizzo il grafico direttamente note T e P critiche 2 se conosco il dato di k ad altra T e P, calcolo kc dal grafico e quindi ripeto il caso 1 71

TCM - Trasporto di calore – Conduzione k da Teoria cinetica dei gas Molecole

TCM - Trasporto di calore – Conduzione k da Teoria cinetica dei gas Molecole come sfere rigide (diametro= s); Velocità media v interagiscono solo attraverso urti elastici densità = n (moli per unità di volume) 72

TCM - Trasporto di calore – Conduzione Gas a bassa densità teoria di Chapman-Enskog

TCM - Trasporto di calore – Conduzione Gas a bassa densità teoria di Chapman-Enskog Tiene conto delle forze intermolecolari repulsione attrazione Diametro collisionale Max energia di attrazione Potenziale di Lennard-Jones Grafico dell’energia potenziale intermolecolare 73

TCM - Trasporto di calore – Conduzione Parametri del potenziale di Lennard-Jones s= diametro

TCM - Trasporto di calore – Conduzione Parametri del potenziale di Lennard-Jones s= diametro collisionale [Angstrom] e= energia caratteristica (massima energia di attrazione) [J] I valori di s e e/k sono tabellati per molte sostanze (Tab. E 1 Bird Stewart Lightfoot Transport phenomena) k = costante di Boltzmann 1. 38 x 10 -23 J/K e/k [=] K 74

75

75

TCM - Trasporto di calore – Conduzione Gas a bassa densità teoria di Chapman-Enskog

TCM - Trasporto di calore – Conduzione Gas a bassa densità teoria di Chapman-Enskog Dalla teoria di Chapman-Enskog si ottiene: k [=] cal/(cm s K) s [=] Å T [=] K M = peso molecolare Wk= parametro che dipende poco dalla temperatura ed è tabellato in funzione dalla temperatura adimensionale k. T/e (vedi tab. E 2) k cresce circa con la radice quadrata di T Vale per gas a bassa densità 76

TCM - Trasporto di calore – Conduzione Gas a bassa densità teoria di Chapman-Enskog

TCM - Trasporto di calore – Conduzione Gas a bassa densità teoria di Chapman-Enskog Teoria cinetica dei gas Teoria di Chapman Enskog s = diametro collisionale [Angstrom] Wk= tabellato in funzione dalla temperatura adimensionale k. T/e (vedi tab. E 2) I valori di s e e/k sono tabellati per molte sostanze (Tab. E 1 Bird) k = costante di Boltzmann 1. 38 x 10 -23 J/K e/k [=] K 77

Tab E. 2 78

Tab E. 2 78

TCM - Trasporto di calore – Conduzione Esempi di calcolo Example 9. 3 -1

TCM - Trasporto di calore – Conduzione Esempi di calcolo Example 9. 3 -1 Bird Calcolare la conducibilità termica del Neon a 1 atm e 373. 2 K Dalla tabella E. 1 del Bird si ricavano le costanti di Lennard-Jones del Neon s= 2. 789 Å e/K =35. 7 K M = 20. 183 g/mole KT/e =373. 2/35. 7=10. 45 79

TCM - Trasporto di calore – Conduzione Esempi di calcolo Example 9. 3 -1

TCM - Trasporto di calore – Conduzione Esempi di calcolo Example 9. 3 -1 Bird Calcolare la conducibilità termica del Neon a 1 atm e 373. 2 K KT/e =373. 2/35. 7=10. 45 Dalla tabella E. 2 del Bird si trova Wk= 0. 821 k = 1. 338 x 10 -4 cal cm-1 s-1 K-1 Valore sperimentale k = 1. 35 x 10 -4 cal cm-1 s-1 K-1 80

TCM - Trasporto di calore – Conduzione Conducibilità di gas poliatomici 1 utilizzo della

TCM - Trasporto di calore – Conduzione Conducibilità di gas poliatomici 1 utilizzo della teoria di Chapman-Enskog con errore crescente al crescere del numero di atomi 2 utilizzo di fattori correttivi o di altre teorie 81

TCM - Trasporto di calore – Conduzione Esempi di calcolo Example 9. 3 -2

TCM - Trasporto di calore – Conduzione Esempi di calcolo Example 9. 3 -2 Bird Calcolare la conducibilità termica dell’ossigeno a 300 K e bassa pressione L’ossigeno è un gas biatomico s= 3. 433 Å e/K =113 K KT/e =300/113=2. 655 M = 32 g/mole Dalla tabella E. 2 del Bird si trova Wk= 1. 075 k = 4. 807 x 10 -5 cal cm-1 s-1 K-1 k = 0. 020 W m-1 K-1 Valore sperimentale k = 0. 0266 W m-1 K-1 Esistono formule correttive per gas poliatomici 82

TCM - Trasporto di calore – Conduzione Miscele di gas a bassa densità La

TCM - Trasporto di calore – Conduzione Miscele di gas a bassa densità La conducibilità termica di una miscela a bassa densità in genere non è una relazione lineare della frazione molare. In genere: Costituenti la mix hanno polarità molto diversa (es. metanolo n-esano) Molecole non polari (es. argon-benzene) 83

TCM - Trasporto di calore – Conduzione Miscele di gas a bassa densità La

TCM - Trasporto di calore – Conduzione Miscele di gas a bassa densità La conducibilità termica di una miscela di gas a bassa densità si calcola dalla relazione e b indicano i diversi componenti della miscela (1, 2. . . N) 84

TCM - Trasporto di calore – Conduzione Esempi di calcolo Calcolare la conducibilità termica

TCM - Trasporto di calore – Conduzione Esempi di calcolo Calcolare la conducibilità termica della miscela benzene (1) x=0. 25; Argon (2) x=0. 75 T=100. 6 °C e P=1 bar. Dati dei puri 85

TCM - Trasporto di calore – Conduzione Esempi di calcolo 86

TCM - Trasporto di calore – Conduzione Esempi di calcolo 86

TCM - Trasporto di calore – Conduzione Esempi di calcolo 87

TCM - Trasporto di calore – Conduzione Esempi di calcolo 87

TCM - Trasporto di calore – Conduzione Esempi di calcolo Si ottiene Il dato

TCM - Trasporto di calore – Conduzione Esempi di calcolo Si ottiene Il dato sperimentale è 88

TCM - Trasporto di calore – Conduzione Conducibilità nei liquidi Nei liquidi i meccanismi

TCM - Trasporto di calore – Conduzione Conducibilità nei liquidi Nei liquidi i meccanismi della conduzione sono analoghi a quelli dei solidi. Per una stessa sostanza il passaggio dallo stato solido allo stato liquido comporta una riduzione della conduttività termica. Rispetto all’aumento di temperatura si ha dapprima un aumento e poi una diminuzione, mentre con la pressione la conduttività aumenta leggermente 89

TCM - Trasporto di calore – Conduzione Conducibilità nei solidi La conduttività termica nei

TCM - Trasporto di calore – Conduzione Conducibilità nei solidi La conduttività termica nei solidi viene ad assumere in funzione della temperatura un andamento caratterizzato da un punto di massimo. In generale si può considerare che i materiali metallici e i conduttori elettrici in genere hanno conduttività termica maggiore dei dielettrici. I solidi cristallini conducono meglio degli amorfi. I solidi conducono più dei liquidi e questi più dei gas 90

TCM - Trasporto di calore – Conduzione in un mezzo anisotropo In generale tutti

TCM - Trasporto di calore – Conduzione in un mezzo anisotropo In generale tutti i solidi dotati di struttura cristallina hanno comportamento fortemente anisotropo, mentre gli amorfi approssimano meglio l’ipotesi di isotropismo. I materiali compositi possono essere anisotropi In questo caso si ha: E il flusso può essere scritto come: N. B. Non è detto che il flusso sia diretto come il gradiente della temperatura 91

TCM - Trasporto di calore – Conduzione in mezzi compositi Un mezzo costituito da

TCM - Trasporto di calore – Conduzione in mezzi compositi Un mezzo costituito da due fasi solide una dispersa nell’altra Si fa riferimento ad un volume di controllo sufficientemente più grande delle disomogeneità del solido ma sufficientemente piccolo rispetto alle dimensioni globali del volume da studiare Il mezzo viene caratterizzato dalla frazione di volume Si definisce una conducibilità effettiva (keff) del materiale composito. 92

TCM - Trasporto di calore – Conduzione in mezzi compositi: sfere incluse in una

TCM - Trasporto di calore – Conduzione in mezzi compositi: sfere incluse in una matrice solida Caso di sfere di conducibilità k 1 immerse in una fase solida di conducibilità k 0 Si definisce una conducibilità effettiva (keff) del materiale composito. Per valori bassi di f Maxwell dimostrò che: Si utilizza anche per valori elevati di f e si trascura l’effetto della eventuale non uniforme distribuzione delle sfere MEZZO ISOTROPO 93

TCM - Trasporto di calore – Conduzione in mezzi compositi: cilindri paralleli inclusi in

TCM - Trasporto di calore – Conduzione in mezzi compositi: cilindri paralleli inclusi in fase solida z Il solido è anisotropo rispetto alla conduzione Per inclusioni non sferiche ad esempio cilindri paralleli all’asse z, Rayleigh dimostrò che: y x 94

TCM - Trasporto di calore – Conduzione in mezzi compositi: letti granulari Per letti

TCM - Trasporto di calore – Conduzione in mezzi compositi: letti granulari Per letti granulari ISOTROPO Per sfere gk è un fattore di forma Per terreni 95

TCM - Trasporto di calore – Conduzione Altri esempi di mezzi compositi • Solidi

TCM - Trasporto di calore – Conduzione Altri esempi di mezzi compositi • Solidi contenenti inclusioni gassose (mattoni forati) • Letti granulari immersi in una fase gas • Condotti cilindrici riempiti con materiale granulare attraversato da un fluido in movimento 96