Fast Pix N an ASIC for a fast

  • Slides: 19
Download presentation
Fast. Pix. N an ASIC for a fast neutron telescope Maciej Kachel, IPHC Strasbourg

Fast. Pix. N an ASIC for a fast neutron telescope Maciej Kachel, IPHC Strasbourg

Outline – Fast. Pix. N • Motivation and current status • Chip requirements •

Outline – Fast. Pix. N • Motivation and current status • Chip requirements • Chip structure • Simulations • Future plans Maciej Kachel, IPHC Strasbourg

Motivation - telescope • Indirect detection of neutrons with CMOS sensor Proton flux after

Motivation - telescope • Indirect detection of neutrons with CMOS sensor Proton flux after the converter ~ 103 p/s·cm 2 We are aiming for 106 p/s·cm 2 Important features: • 3 planes of detectors - > tracking and removing background • Diode to record the energy • Energy discrimination - > select hits only from required range of energies Maciej Kachel, IPHC Strasbourg

Télescope à Protons de recul (TPR) Contexte de développement ▌Collaboration IPHC/IRSN-LMDN(CEA Cadarache) L’installation AMANDE

Télescope à Protons de recul (TPR) Contexte de développement ▌Collaboration IPHC/IRSN-LMDN(CEA Cadarache) L’installation AMANDE – Accélérateur tandetron de 2 MV – Protons et deutons de 100 ke. V à 4 Me. V – Production de champs neutroniques mono-énergétique de 2 ke. V à 20 Me. V ▌Instrumentation IPHC Maîtrise d’oeuvre de l’instrument Transfert technologique Projets court terme (3 ans) But : Développer un étalon primaire capable de mesurer l’énergie et la fluence suivant une procédure primaire à l’aide d’un seul outil Principe de détection 1 1 1 Tracking neutron 1 Θ proton (X 1, Y 1) d 2 (X 2, Y 2) Y X d 3 (X 3, Y 3) TPR

Recoil Proton Telescope (2010 -) ▌Quelques chiffres 3 plans MStar 320*320 pixels (1 cm

Recoil Proton Telescope (2010 -) ▌Quelques chiffres 3 plans MStar 320*320 pixels (1 cm 2) + Diode Si. Li Flux ADC 12 bits 20 MHz (200 images/s) ~1 Gbs FPGA CDS (2 frames), Zero suppression, Ethernet, Usb Time tag, Slow Control GUI (webserver) Python ▌Performances 14 Me. V : En =13. 62± 0. 65 Me. V 17 Me. V : En =16. 31± 0. 86 Me. V Fluence jusqu’à 106 n/cm 2/s ITER / SPIRAL 2 -NFS / Hadronthérapie Fluence 108 n/cm 2/s (x 100) FASTPIXN (Q 4 2012) TPRII (2013 -) 100 000 images/s

ASIC requirements • Position and energy information • Position - 128 x 128 pixels

ASIC requirements • Position and energy information • Position - 128 x 128 pixels in 50 µm pitch -> 6. 4 x 6. 4 mm 2 • Collected charge in range 30 ke- – 200 ke- - need ADC • Fast frame readout - 10µs (inelastic events in the diode) Charge range → Big collecting diode (25µm x 25µm) → High signal to noise ratio Technology: X-FAB OPTO 0. 35 um, 3 wafer engineering run - cheap Maciej Kachel, IPHC Strasbourg

Speed up the readout • Speed up by double readout Maciej Kachel, IPHC Strasbourg

Speed up the readout • Speed up by double readout Maciej Kachel, IPHC Strasbourg

Pixel structure All transistors are Enclosed Layout Transistors to prevent radiation damage Maciej Kachel,

Pixel structure All transistors are Enclosed Layout Transistors to prevent radiation damage Maciej Kachel, IPHC Strasbourg

ASIC • Column structure Maciej Kachel, IPHC Strasbourg

ASIC • Column structure Maciej Kachel, IPHC Strasbourg

ASIC • Readout structure (basic version) High speed LVDS drivers output the data from

ASIC • Readout structure (basic version) High speed LVDS drivers output the data from columns Maciej Kachel, IPHC Strasbourg

Post layout simulations AMP output Charge 20 ke- 250 ke. Q 0 Flash Output

Post layout simulations AMP output Charge 20 ke- 250 ke. Q 0 Flash Output Q 1 Q 2 Q 3 Frame readout = 6 µs Readout time = 50 ns, 100 ns between pixels Maciej Kachel, IPHC Strasbourg

Post layout simulations Linearity Noise ~ 150 e- 20 ke- - 250 ke- →

Post layout simulations Linearity Noise ~ 150 e- 20 ke- - 250 ke- → Maciej Kachel, IPHC Strasbourg S/Nmin > 200

Readout options (I) – Basic readout - read all of the data • Pros:

Readout options (I) – Basic readout - read all of the data • Pros: There is no lost data • Cons: – Reading 0’s most of the time (with low fluxes) Maciej Kachel, IPHC Strasbourg

Readout options (II) – Read only non-zero data • Pros: – Increase speed of

Readout options (II) – Read only non-zero data • Pros: – Increase speed of the readout – Decrease the number of output lines/drivers – Simple with this hit rate • Cons: – may cause data loss (highly improbable) Both solutions will be implemented in the prototype Maciej Kachel, IPHC Strasbourg

Summary of simulations • How fast can we go (frame rate) ? 10 µs

Summary of simulations • How fast can we go (frame rate) ? 10 µs / frame -> 100 k frames/s (6 μs → 160 k frames/s) • How fast must we go? Depends on the proton flux & rate of inelastic events in the diode • The bottleneck is the readout speed The proper readout approach will be chosen after tests Maciej Kachel, IPHC Strasbourg

Summary • Prototype chip submission (this week) – Matrix 32 x 64 – Two

Summary • Prototype chip submission (this week) – Matrix 32 x 64 – Two options of readout – Analog outputs – Test inputs in half of the matrix – Command decoder with DACs • First test results expected in Q 4 2012 • TPR II (2013 -) Maciej Kachel, IPHC Strasbourg

Thank you for your attention Team : Fast. Pix. N D. Husson, S. Higueret,

Thank you for your attention Team : Fast. Pix. N D. Husson, S. Higueret, M. Kachel Maciej Kachel, IPHC Strasbourg

Motivation • Particle detection – with use of CMOS sensor Advantages of CMOS approach:

Motivation • Particle detection – with use of CMOS sensor Advantages of CMOS approach: • Cheap technology • Flexible design of pixel matrix (ASIC – Application Specific Integrated Circuit) • Accurate position of the hit • Precise measurement of collected charge (with depleted substrate) Maciej Kachel, IPHC Strasbourg

Motivation • Neutron detection neutron Θ proton EP~EN·cos 2Θ Maciej Kachel, IPHC Strasbourg

Motivation • Neutron detection neutron Θ proton EP~EN·cos 2Θ Maciej Kachel, IPHC Strasbourg