Exploring Faraday Rotation Measure due to the Intergalactic

  • Slides: 14
Download presentation
Exploring Faraday Rotation Measure due to the Intergalactic Magnetic Field with the Square Kilometer

Exploring Faraday Rotation Measure due to the Intergalactic Magnetic Field with the Square Kilometer Array Takuya Akahori Chungnam National University 2010. 11. 4 -5 SKA-JP Workshop 2010@NAOJ Akahori 1/14

Contents • Introduction • Faraday Rotation Measure (RM) due to the Intergalactic Magnetic Field

Contents • Introduction • Faraday Rotation Measure (RM) due to the Intergalactic Magnetic Field (IGMF) – Part 1. present-day local universe – Part 2. cosmological effect – Part 3. galactic foreground • Summary and Future References: Akahori, Ryu (2010), Ap. J, 723, 476 ー (2010) to be submitted Akahori, SKA-Japan sub-SWG “Cosmic Magnetism”, Chap. 4 2010. 11. 4 -5 SKA-JP Workshop 2010@NAOJ 2

Introduction: Baryon in our Universe Baryon Phase • ICM (>107 K) Intra-Cluster Medium •

Introduction: Baryon in our Universe Baryon Phase • ICM (>107 K) Intra-Cluster Medium • WHIM (105 -7 K) Warm-Hot Intergalactic Medium • Others Baryon Phase Diagram from cosmo. simulation (Piro+ 07) Ionized Medium ICM/WHIM 2010. 11. 4 -5 Magnetized? Inter-Galactic Magnetic Field SKA-JP Workshop 2010@NAOJ IGMF 3

Introduction: IGMF and RM Evidences of Magnetization • ICM: RM ~100 [rad m-2] IGMF

Introduction: IGMF and RM Evidences of Magnetization • ICM: RM ~100 [rad m-2] IGMF ~1 -10 [μG] – Kolmogorov? (Vogt & Ensslin 05; Guidetti+ 08; Bonafede+ 10) WHIM: RM < 10 [rad m-2] ? IGMF ~ ? • WHIM: RM < 10 [rad m ] ? IGMF ~ ? Where is the large-scale structure? RM through the ICM Govoni+ (10) All sky RM map Taylor, Stil, Sunstrum (09) IGMF remains largely unknown 2010. 11. 4 -5 SKA-JP Workshop 2010@NAOJ 4

Model: Our Model for the IGMF • Goal: Predict RM of WHIM & test

Model: Our Model for the IGMF • Goal: Predict RM of WHIM & test it by future obs. • Method: Simulation of the cosmological structure formation + turbulence dynamo model (Ryu+ 08) – MHD…still hard to treat evolution of turbulence and amplification of the IGMF correctly 100 h-1 Mpc Energy density turbulence dynamo model 1. vorticity energy εw 2. regard εw as εturb 3. εB/εturb=f(t/teddy) 4. B=(8πεB)1/2 ICM Ryu+ (08) 10 -4μG Ryu+ (08) |B| 10μG WHIM 2010. 11. 4 -5 time [teddy] Cho & Ryu (09) SKA-JP Workshop 2010@NAOJ 5

1 Present-day Local universe: Profiles Log 10 |RM| 2. 0 [rad m-2] 1. 0

1 Present-day Local universe: Profiles Log 10 |RM| 2. 0 [rad m-2] 1. 0 0. 0 -1. 0 -2. 0 -50 -25 0 [h-1 Mpc] 25 50 • RM: ~100 (GCs), ~10 (Groups), ~0. 01 -1 (filaments) • RM: a random walk process, peaked at the center 2010. 11. 4 -5 SKA-JP Workshop 2010@NAOJ 6

1 Present-day Local Universe: Statistics PDF of |RM| for WHIM (105 K<Tx<107 K) Tx:

1 Present-day Local Universe: Statistics PDF of |RM| for WHIM (105 K<Tx<107 K) Tx: emissivity weighted temperature. Black: 3× 16 runs, Red: average, Blue: best-fit ・Lognormal profile of PDF ・rms ~ 1. 4 [rad m-2] for WHIM 100 h-1 1 h-1 Mpc 10 h-1 1 h-1 Mpc 2 D power spectra of RM and the projected IGMF Black: 3× 16 runs, Red: average ・Peaked at ~Mpc scale ・PRM(k) traces PB||, proj(k) 2010. 11. 4 -5 SKA-JP Workshop 2010@NAOJ 7

2 Cosmological Effects: RM Stacking Willman+ (08) Simulation boxes are stacked up to z=5

2 Cosmological Effects: RM Stacking Willman+ (08) Simulation boxes are stacked up to z=5 Redshift distribution of radio sources are considered z=0. 1 0. 3 0. 5 1. 0 3. 0 • |RM| increases with integrating RM along LOS 2010. 11. 4 -5 SKA-JP Workshop 2010@NAOJ 5. 0 Log |RM| [rad m-2] 8

2 Cosmological Effecs: rms Value Subtl. of ICM in the integration temperature Tx=4 ke.

2 Cosmological Effecs: rms Value Subtl. of ICM in the integration temperature Tx=4 ke. V ALL CLS TM 7 Average of 200 runs Subtl. of ICM after the integration [rad m-2] RM of WHIM (in) RM of WHIM (after) 2010. 11. 4 -5 1 Mpc Tx=1. 5 ke. V Line of sight 107 K 7 -10 6 -7 TS 8 ALL Map Pixcels w Tx>107 K & Sx>10 -8 e/s/cm 2/sr TS 0 ALL Map Pixcels w Tx>107 K & Sx>10 -10 e/s/cm 2/sr SKA-JP Workshop 2010@NAOJ 9

2 Cosmological Effects: Statistics Average of 200 runs TM 7 ~0. 2º z<5 z<0.

2 Cosmological Effects: Statistics Average of 200 runs TM 7 ~0. 2º z<5 z<0. 3 z<0. 05 1. 4º 0. 14º • PDF of |RM| follows the log-normal distribution • Power spectrum peaks at ~0. 2º scale 2010. 11. 4 -5 SKA-JP Workshop 2010@NAOJ 10

2 Cosmological Effect: Structure Function 2 nd order SF ALL Average of TS 8

2 Cosmological Effect: Structure Function 2 nd order SF ALL Average of TS 8 200 runs TS 0 Intergalactic? 10º-100º 0. 2º 0. 1º Galactic 1º 10º 2 nd order SF (Mao+ 10) • Flat SF profile in ~0. 1º-10º 2010. 11. 4 -5 SKA-JP Workshop 2010@NAOJ 11

3 Galactic Foreground: Concept of Analysis • Galactic foreground RM of order ~10 [rad

3 Galactic Foreground: Concept of Analysis • Galactic foreground RM of order ~10 [rad m-2] is a serious contamination Remove the large scale component 0. 2º 10º-100º Intrinsic RM Galactic RM Filtered RM Galactic Contamination? 2010. 11. 4 -5 FFT SKA-JP Workshop 2010@NAOJ Intrinsic + Galactic High-pass filter FWT 12

Summary RM in filaments is discussed using a model IGMF • Present-day local universe

Summary RM in filaments is discussed using a model IGMF • Present-day local universe – rms ~ 1 [rad m-2], lognormal, peak at ~Mpc • Cosmological effects – rms ~ several [rad m-2], lognormal, peak at ~0. 2º • Galactic Foreground – High-pass filters (FFT/FWT) may work well Our estimated RM could be tested with the SKA A concept design for SKA Phase 1 (Garrett+ 10) 2010. 11. 4 -5 SKA-JP Workshop 2010@NAOJ 13

Future • Wide-band observation – RM ranges from ~0. 1 to ~100 rad m-2

Future • Wide-band observation – RM ranges from ~0. 1 to ~100 rad m-2 • Collaboration with galaxy community – Modeling of galactic foreground – Development of RM analysis • Participation in projects – ASKAP/POSSUM – Japan SKA consortium SWG – Korea SKA consortium? 2010. 11. 4 -5 SKA-JP Workshop 2010@NAOJ Sofue, Machida, Kudo (10) 14