Exotics from Heavy Ion Collision Su Houng Lee

  • Slides: 33
Download presentation
Exotics from Heavy Ion Collision Su Houng Lee – (Ex. HIC coll. ) 1.

Exotics from Heavy Ion Collision Su Houng Lee – (Ex. HIC coll. ) 1. Recent findings of “Multiquark states” 2. Statistical vs Coalescence model for hadron production 3. Exotic production in HIC 4. Summary 1

I: Recent findings of “Multiquark states” 2

I: Recent findings of “Multiquark states” 2

X(3872) - 2003 - - 2013 - 3

X(3872) - 2003 - - 2013 - 3

Z(4430) - 2007 - - 2014 Spin parity = 1+ G=+ will look at

Z(4430) - 2007 - - 2014 Spin parity = 1+ G=+ will look at C=- 4

Z(3900) - 2013 BESIII Probably the same Quantum Number as Z(4430) Hence, 5

Z(3900) - 2013 BESIII Probably the same Quantum Number as Z(4430) Hence, 5

Width of p A V - A 1(1260) r + p - Z(3900) J/y

Width of p A V - A 1(1260) r + p - Z(3900) J/y + p - Z(4430) y‘ + p Although quark content is [(cu)(cd)], overlap is very small 6

Quark wave function for Tetraquark - wave and spin 1 - Woosung Park (Thesis)

Quark wave function for Tetraquark - wave and spin 1 - Woosung Park (Thesis) 1 c 2 q quark 3 c 4 q antiquark Color singlet Spin 1 7

Quark wave function for s-wave S=1 Tetraquark 1 c q 2 3 c q

Quark wave function for s-wave S=1 Tetraquark 1 c q 2 3 c q 4 (Park, SHL 14) C=+ Color Spin C=- 8

Hamiltonian Using Brink, Stancu 98 Ground state of C=+ (Woosung Park, SHL 14) Or

Hamiltonian Using Brink, Stancu 98 Ground state of C=+ (Woosung Park, SHL 14) Or 9

 State with C=- (Woosung Park, SHL 14) Ground state Or Z(4430) and Z(3900)

State with C=- (Woosung Park, SHL 14) Ground state Or Z(4430) and Z(3900) are molecular states: Or Z(4430), X(3872) can be mixture of tetraquark and molecule Navara, Nielsen, Lee, Phys. Rept (11) 10

Why only heavy tetraquarks ? ? (qq) vs (qq) attraction Ø Ø q q

Why only heavy tetraquarks ? ? (qq) vs (qq) attraction Ø Ø q q Introducing c c q q 11

Tetra-quark – hadronic weak decay modes 1+ u SHL, S Yasui, W Liu, C

Tetra-quark – hadronic weak decay modes 1+ u SHL, S Yasui, W Liu, C Ko (08) - d c c 0 - u c 1 - d c Binding against decay = - 79. 3 Me. V Previous works on Tcc Z. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui, S. L. Zhu (07) QCD sum rules: F Navarra, M. Nielsen, SHLee, PLB 649, 166 (2007) simple diquark: SHL, S. Yasui, W. Liu, C Ko EPJ C 54, 259 (2008), SHL, S. Yasui: EPJ C (09) 12

Question 1: Are X(3872), Z(3900), Z(4430) molecular states or multiquark states Question 2: Where

Question 1: Are X(3872), Z(3900), Z(4430) molecular states or multiquark states Question 2: Where can we find flavor exotic multiquark states Answer for both 1 and 2: From HIC 13

Normal meson, Tetraquark and Molecule Normal meson Tetraquark Molecule u Geometrical configuration u d

Normal meson, Tetraquark and Molecule Normal meson Tetraquark Molecule u Geometrical configuration u d u u u d 14

Naïve Bag Model for Multiquark states u d u 15

Naïve Bag Model for Multiquark states u d u 15

II: Statistical vs Coalescence model for Hadron production in Heavy Ion Collision -Production of

II: Statistical vs Coalescence model for Hadron production in Heavy Ion Collision -Production of hadrons -Production of light nuclei 16

Hadron production in ( p+p C+X ) collision c u b p d u

Hadron production in ( p+p C+X ) collision c u b p d u Gb/p c b ds a d p c u Ga/p C DC/c g d a X 17

Hadronization and freezeout in Heavy Ion Collision T>Tc 1 fm/c TH: Hadronization QGP 7

Hadronization and freezeout in Heavy Ion Collision T>Tc 1 fm/c TH: Hadronization QGP 7 fm/c 5 fm/c T=Tc TF: Freezeout Hadron phase Hadron Multiquark formation t 17 fm/c Light nuclei Molecular structure formation 18

Statistical Model for Hadron Yield in HIC (PB Munzinger, Stachel, Redlich) Freezeout points 19

Statistical Model for Hadron Yield in HIC (PB Munzinger, Stachel, Redlich) Freezeout points 19

Coalescence model M u d d u PT dependence of ratio Ko et al

Coalescence model M u d d u PT dependence of ratio Ko et al u s u d c s c Quark number scaling of v 2 Ko et al d u c c d v 4 Ko et al 20

Hadron production near phase bounday (TH ) Coalescence model = Statistical model + overlap

Hadron production near phase bounday (TH ) Coalescence model = Statistical model + overlap Suppression of p-wave resonance (Muller and Kadana En’yo) M u u s u d d u d c s c d u c d c 21

Molecule and light nuclei production near freezeout (TF ) Statistical Model for light Nuclei

Molecule and light nuclei production near freezeout (TF ) Statistical Model for light Nuclei RHIC/STAR antimatter 22

Hadronic phase and Deuteron formation in Heavy Ion Collision VF: Freezeout Volume VH: Hadronization

Hadronic phase and Deuteron formation in Heavy Ion Collision VF: Freezeout Volume VH: Hadronization Volume T>Tc 1 fm/c TH: Hadronization QGP 7 fm/c 5 fm/c T=Tc TF: Freezeout Hadron phase t 17 fm/c S/N is conserved (Siemens, Kapusta 79) 23

But Production of multiquark states are suppressed Success of Coalescence model u d Normal

But Production of multiquark states are suppressed Success of Coalescence model u d Normal meson [overlap]=1 d d u c u s d c s u u d d u u d c u d d u Tetraquark configuration [overlap]<<1 24

Hadron production through coalescence u d Normal meson [overlap]=1 d s d d d

Hadron production through coalescence u d Normal meson [overlap]=1 d s d d d u d d s d u u s d d d s u u d u u s d u u u d u d u u d Molecular configuration: [overlap]=1 Tetraquark configuration [overlap]<<1 25

III: Heavy Exotics from Heavy Ion Collision 26

III: Heavy Exotics from Heavy Ion Collision 26

New perspective of Hadron Physics from Heavy Ion Collision Ø large number of c

New perspective of Hadron Physics from Heavy Ion Collision Ø large number of c , b quark production Ø Vertex detector: weakly decaying exotics : FAIR 104 D 0 /month, LHC 10 5 D 0/month Ø Tcc production Tcc/D > 0. 34 x 10 > 0. 8 x 10 -4 -4 RHIC LHC 27

Details of coalescence model calculation (Ex. HIC PRL, PRC 2011) Ø Model central rapidity,

Details of coalescence model calculation (Ex. HIC PRL, PRC 2011) Ø Model central rapidity, central collision Ø Introduce charm fugacity Ø Coalescence model and Wigner function Ø LHC 10 5 D 0/month Parameters to fit normal hadron production including resonance feedown from statistical model 28

Ø Hadron coalescence 29

Ø Hadron coalescence 29

Fachini [STAR] Expectations [overlap] at LHC 30

Fachini [STAR] Expectations [overlap] at LHC 30

Ex. HIC (2011): multiquark/molecule candidates - yield 31

Ex. HIC (2011): multiquark/molecule candidates - yield 31

Summary 1. Compact multiquark configurations are harder to form from heavy ion collision. f

Summary 1. Compact multiquark configurations are harder to form from heavy ion collision. f 0 measurement suggest that it can not be a pure multiquark structure. 2. Measuring X(3872) or Z(3900) J/y+ p from heavy ion collision can discriminate between a molecular structure and multiquark configuration. 3. Heavy multiquark states + Exotics can be observed at LHC 32

Deuteron production [Coalescence at TF (125 Me. V) ] VF : Freezeout Volume TF

Deuteron production [Coalescence at TF (125 Me. V) ] VF : Freezeout Volume TF : Freezeout Temp VH TH : Hadronization V (fm 3) Nstat(TH) 1908 VD(T) (fm 3) NN Deuteron Triton 0. 7 30 0. 25 0. 0014 0. 24 0. 0014 Ncoal(TF) V parameterization: 11322 16 15. Chen, Greco, Ko, SHL , Liu 04 33