Example 8 Puzzle State Space 1 initial state

  • Slides: 43
Download presentation

Example: 8 -Puzzle

Example: 8 -Puzzle

State Space 1. initial state 2. successor function

State Space 1. initial state 2. successor function

Goal Test 3. goal test

Goal Test 3. goal test

Partial) Search Space for 8 -) Puzzle Problem 1. initial state 2. successor function

Partial) Search Space for 8 -) Puzzle Problem 1. initial state 2. successor function 3. goal test

Vaccuum World Revisited

Vaccuum World Revisited

(Vacuum World (continued

(Vacuum World (continued

Example: Route Planning in a Map Graph: nodes are cities and links are roads.

Example: Route Planning in a Map Graph: nodes are cities and links are roads. • Map gives world dynamics • Current state is known • World is fully predictable • World (set of cities) is finite and enumerable. Cost: total distance or total time for path.

Route Planning: Romania Z 71 O 151 S 99 F 75 211 A 90

Route Planning: Romania Z 71 O 151 S 99 F 75 211 A 90 140 R 120 118 T 111 L 75 70 M D 97 B P 101 146 138 C Slides on Route Planning Adapted from Leslie Kaelbling’s AI notes.

General Search-Tree Algorithm

General Search-Tree Algorithm

Breadth-First Search O S Z A F R P T L M D C

Breadth-First Search O S Z A F R P T L M D C B

Breadth-First Search O A S Z A F R P T L M D

Breadth-First Search O A S Z A F R P T L M D C B

Breadth-First Search O A ZA S A T A S Z A F R

Breadth-First Search O A ZA S A T A S Z A F R P T L M D C B

Breadth-First Search O A ZA S A T A S Z A F R

Breadth-First Search O A ZA S A T A S Z A F R SA TA OAZ P T L M D C B

Breadth-First Search O A ZA S A T A S Z A F R

Breadth-First Search O A ZA S A T A S Z A F R SA TA OAZ OAS FAS RAS P T L M D C B

Breadth-First Search O A ZA S A T A S Z A F R

Breadth-First Search O A ZA S A T A S Z A F R SA TA OAZ OAS FAS RAS LAT P T L M D C B

Breadth-First Search O A ZA S A T A S Z A F R

Breadth-First Search O A ZA S A T A S Z A F R SA TA OAZ OAS FAS RAS LAT P T L M D C B

Breadth-First Search O A ZA S A T A S Z A F R

Breadth-First Search O A ZA S A T A S Z A F R SA TA OAZ OAS FAS RAS LAT P T L M D C B

Breadth-First Search O A S Z ZA S A T A A F R

Breadth-First Search O A S Z ZA S A T A A F R SA TA OAZ P TA OAZ OAS FAS RAS LAT BASF Result = BASF T L M D C B

Breadth-First Search O S Z A F R B P T L M D

Breadth-First Search O S Z A F R B P T L M D C

Evaluation of Search Strategies • • Completeness Time Complexity Space Complexity Optimality To evaluate,

Evaluation of Search Strategies • • Completeness Time Complexity Space Complexity Optimality To evaluate, we use the following terms • b = branching factor • m = maximum depth • d = goal depth

Evaluation of BFS • Complete • Complexity: – O(bd) time – O(bd) space •

Evaluation of BFS • Complete • Complexity: – O(bd) time – O(bd) space • Optimal (counting by number of arcs).

Depth-First Search O S Z A F R P T L M D C

Depth-First Search O S Z A F R P T L M D C B

Depth-First Search O A S Z A F R P T L M D

Depth-First Search O A S Z A F R P T L M D C B

Depth-First Search O A ZA S A T A S Z A F R

Depth-First Search O A ZA S A T A S Z A F R P T L M D C B

Depth-First Search O A ZA S A T A S Z A F R

Depth-First Search O A ZA S A T A S Z A F R P T L M D C B

Depth-First Search O A ZA S A T A S Z A F R

Depth-First Search O A ZA S A T A S Z A F R OAZ SA TA P T L M D C B

Depth-First Search O A ZA S A T A S Z A F R

Depth-First Search O A ZA S A T A S Z A F R OAZ SA TA SAZO SA TA P T L M D C B

Depth-First Search O A ZA S A T A S Z A F R

Depth-First Search O A ZA S A T A S Z A F R OAZ SA TA SAZO SA TA FAZOS RAZOS SA TA P T L M D C B

Depth-First Search O A ZA S A T A S Z A F R

Depth-First Search O A ZA S A T A S Z A F R OAZ SA TA SAZO SA TA FAZOS RAZOS SA TA BAZOSF RAZOS SA TA P T L M D C B

Depth-First Search O A S Z ZA S A T A A F R

Depth-First Search O A S Z ZA S A T A A F R OAZ SA TA SAZO SA TA FAZOS RAZOS SA TA BAZOSF RAZOS SA TA Result = BAZOSF P T L M D C B

Depth-first Search O S Z A F R B P T L M D

Depth-first Search O S Z A F R B P T L M D C

Evaluation of DFS • Not complete • Complexity: – O(bm) time – O(mb) space

Evaluation of DFS • Not complete • Complexity: – O(bm) time – O(mb) space • Non-optimal

Lisp Implementation (defun tree-search (states goal-successors combiner) "Find a state that satisfies goal-p. Start

Lisp Implementation (defun tree-search (states goal-successors combiner) "Find a state that satisfies goal-p. Start with states, and search according to successors and combiner. " (cond ((null states) fail) ((funcall goal-p (first states)) (t (tree-search (funcall combiner (funcall successors (first states)) (rest states)) goal-p successors combiner))))