Examining Ocean Alkalinity Past Present and Future Techniques

  • Slides: 37
Download presentation
Examining Ocean Alkalinity: Past, Present and Future Techniques and Technologies Chris Hunt Joe Salisbury

Examining Ocean Alkalinity: Past, Present and Future Techniques and Technologies Chris Hunt Joe Salisbury Doug Vandemark Coastal Carbon Group- Ocean Process Analysis Lab University of New Hampshire

What is alkalinity? “the number of moles of hydrogen ion equivalent to the excess

What is alkalinity? “the number of moles of hydrogen ion equivalent to the excess of proton acceptors over proton donors…” (Dickson 1981) Acid-Neutralizing Definition: Alk = [HCO 3−] + 2[CO 3− 2] + [B(OH)4−] + 2[PO 4− 3] + [HPO 4− 2] + [Si. O(OH)3−] …+ [Organic-] Ion Balance Definition [HCO 3−] + 2[CO 3− 2] +[OH-]- [H+ ] = [Na+]+[K+]+ 2[Ca+2] + 2[Mg+2] - [Cl-] - 2[SO 4 -2] - [Organic-] Working Ocean Alkalinity Definition: C-Alk = [HCO 3−] + 2[CO 3− 2] ≈ [HCO 3−] NC-Alk = [B(OH)4−] + 2[PO 4− 3] + [HPO 4− 2] + [Si. O(OH)3−] + [Organic-] Org-Alk = [Organic-] ≈ NC-Alk 2

What is alkalinity, and why is it important? “the number of moles of hydrogen

What is alkalinity, and why is it important? “the number of moles of hydrogen ion equivalent to the excess of proton acceptors over proton donors…” (Dickson 1981) The capacity of ocean water to neutralize acid OR The chemical buffering capacity of the ocean. 3

How do we examine the carbonate system? Geochemical/biochemical -Temperature, salinity Biological Calcification -Dissolved oxygen

How do we examine the carbonate system? Geochemical/biochemical -Temperature, salinity Biological Calcification -Dissolved oxygen -Carbonate System Measurements: *p. H *Total Alkalinity (T-Alk) *Dissolved Inorganic Carbon (DIC) *Partial Pressure of Carbon Dioxide (p. CO 2) -Calcium (? ) Doney et al. 2009 4

Significance of alkalinity measurements to ocean acidification studies From Mc. Laughlin et al. 2015

Significance of alkalinity measurements to ocean acidification studies From Mc. Laughlin et al. 2015 Measurement of any two allows calculation of the entire carbonate system (plus Ω) 5

Past � Collection at sea � Analysis at sea � Classic titration, becomes semi-automated

Past � Collection at sea � Analysis at sea � Classic titration, becomes semi-automated Image from Broeker and Peng 1982 Image from http: //www. epoc. u-bordeaux. fr/indiv/Abril/titration. html 6

Timeline of Ocean Alk Measurements �Anderson and Robinson 1946 �Gripenberg 1960 - Baltic Sea

Timeline of Ocean Alk Measurements �Anderson and Robinson 1946 �Gripenberg 1960 - Baltic Sea �Park 1969 - Columbia River Estuary �GEOSECS- 1972 -1978 �TTO-NAS (Transient Tracers in the Ocean 1980 -1982) �SAVE (South Atlantic Ventilation Experiment)- 19871989 �JGOFS, WOCE, OACES- 1990 s �GLOBEC (Global Ocean Ecosystem Dynamics 1990 s 2000 s) 7

GEOSECS � Atlantic: July 1972 to May 1973 � Pacific: August 1973 to June

GEOSECS � Atlantic: July 1972 to May 1973 � Pacific: August 1973 to June 1974 � Indian Ocean: December 1977 to March 1978 TTO- 1981 8

SAVE � South Atlantic 1987 -1988 GEOSECS North Pacific Station From Broecker and Peng

SAVE � South Atlantic 1987 -1988 GEOSECS North Pacific Station From Broecker and Peng 1982 9

WOCE 1990 s 10

WOCE 1990 s 10

11

11

Present �Synthesis, producing global and regional climatologies �Semi-automated p. H-based titration at sea or

Present �Synthesis, producing global and regional climatologies �Semi-automated p. H-based titration at sea or in lab �Spectrophotometric p. H (increased accuracy) �Standardized methods, certified reference materials beginning in 1990 (Andrew Dickson, Scripps) 12

From http: //www. ukgeotraces. com/outreach/blog_a 10_2010 Apollo Sci. Tech AS-ALK 3 13

From http: //www. ukgeotraces. com/outreach/blog_a 10_2010 Apollo Sci. Tech AS-ALK 3 13

Alkalinity at Salinity 35: Atlantic: 2313 µmol/kg Pacific: 2311 µmol/kg Indian: 2294 µmol/kg From

Alkalinity at Salinity 35: Atlantic: 2313 µmol/kg Pacific: 2311 µmol/kg Indian: 2294 µmol/kg From Millero et al. 1998 14

GLODAP Alkalinity From Key et al. 2004 15

GLODAP Alkalinity From Key et al. 2004 15

Takahashi Climatology Map 16 From Takahashi et al. 2014

Takahashi Climatology Map 16 From Takahashi et al. 2014

UNH TA-S regression with Lines from Lee, etc. 17

UNH TA-S regression with Lines from Lee, etc. 17

From Millero et al. 1998 18

From Millero et al. 1998 18

Alkalinity Potential Alkalinity: ((TA + Nitrate) x 35/Salinity) GLODAP Surface Alkalinity From Key et

Alkalinity Potential Alkalinity: ((TA + Nitrate) x 35/Salinity) GLODAP Surface Alkalinity From Key et al. 2004 19

From Lee et al. 2006 20

From Lee et al. 2006 20

From Lee et al. 2006 21

From Lee et al. 2006 21

From Lee et al. 2006 22

From Lee et al. 2006 22

UNH Global Alkalinity Dataset 23

UNH Global Alkalinity Dataset 23

Future From Salisbury et al. 2015 SOCAT f. CO 2 global data From Land

Future From Salisbury et al. 2015 SOCAT f. CO 2 global data From Land et al. 2014 24

From Cressey 2015 From Cornwall et al. 2015 25

From Cressey 2015 From Cornwall et al. 2015 25

TAACT � Tracking ocean Alkalinity and Acidification using new Carbon measurement Technologies � Primary

TAACT � Tracking ocean Alkalinity and Acidification using new Carbon measurement Technologies � Primary Investigator: Joe Salisbury, UNH � Collaborators: � Steffen Aßmann, GEOMAR Helmholtz Centre for Ocean Research, Kiel � Peer Fietzek and Carsten Frank, CONTROS Gmb. H, GEOMAR Helmholtz Centre for Ocean Research, Kiel � Jonathan Hare, NOAA NMFS Northeast Fisheries Science Center, Narragansett, RI � William Mook, Mook Sea Farms, 321 Maine Rt. 129, Walpole, ME � Ru Morrison, Northeastern Regional Association of Coastal and Ocean Observing Systems, Newington, NH � Douglas Vandemark and Christopher W. Hunt, UNH � Rik Wanninkhof, NOAA AOML, Miami, FL 26

TAACT Goals � 1. Establish baseline data and autonomous techniques for OA data collection

TAACT Goals � 1. Establish baseline data and autonomous techniques for OA data collection that support offshore fisheries and climate applications � 2. Document nearshore OA variability for use in aquaculture and coastal management applications � 3. Determine suitable and sufficient OA measurement best practices for the Northeast region 27

Contros Hydro. FIA TA analyzer � Autonomous operation � Spectrophotometric, single-point alkalinity determination �

Contros Hydro. FIA TA analyzer � Autonomous operation � Spectrophotometric, single-point alkalinity determination � 400 µmol range (~20% ocean TA) � Accuracy +/- 25 µmol/kg � Precision +/- 5 µmol/kg 28

29

29

Figure 3 - Proposed NERACOOS-CML and MSF shoreside sites (green), current UNH sampling sites

Figure 3 - Proposed NERACOOS-CML and MSF shoreside sites (green), current UNH sampling sites (red), Maine DMR trawl survey sites (blue), NOAA-NMFS sites and track (yellow), and Skógafoss line (magenta). Insets clockwise from top left: NOAA-NMFS R/V Bigelow, SOOP Skógafoss, Maine DMR trawler FV Robert Michael, shoreside gas equilibrator. 30

TAACT Implementation � Phase 1 - Evaluation at UNH Coastal Marine Lab � Phase

TAACT Implementation � Phase 1 - Evaluation at UNH Coastal Marine Lab � Phase 2 - Deployment at Mook Seafarm and AOML SOOP vessel � Phase 3 - Deployment aboard NMFS-ECOMON cruise 31

Mook Sea Farm �An oyster farm and hatchery located on the Damariscotta River in

Mook Sea Farm �An oyster farm and hatchery located on the Damariscotta River in mid-coast Maine �Their need is to identify which parameters affect larval production and to put reliable, user friendly and accurate instrumentation in place to monitor these parameters. 32

Yang and Byrne 2015 “There must exist in Baltic water other anions Of weak

Yang and Byrne 2015 “There must exist in Baltic water other anions Of weak acids, which have their own rhythm of Variation and which seemingly erratically Influence the alkalinity values. ” -Gripenberg 1960 33

K-30 CO 2 Sensor Cable Silicone Sealant Air Pump Air Flow PVC pipe Float

K-30 CO 2 Sensor Cable Silicone Sealant Air Pump Air Flow PVC pipe Float A Float B 34

Questions? 35

Questions? 35

References � Anderson, D. H. , Robinson, R. J. , 1946. Rapid Electrometric Determination

References � Anderson, D. H. , Robinson, R. J. , 1946. Rapid Electrometric Determination of Alkalinity of Sea Water Using Glass Electrode. Ind. Eng. Chem. Anal. Ed. 18, 767– 769. doi: 10. 1021/i 560160 a 011 � Cornwall, C. E. , Hurd, C. L. , 2015. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. fsv 118. doi: 10. 1093/icesjms/fsv 118 � Cressey, D. , 2015. Crucial ocean-acidification models come up short. Nature 524, 18– 19. doi: 10. 1038/524018 a � Dickson, A. G. , 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Research Part A. Oceanographic Research Papers 28, 609– 623. doi: 10. 1016/0198 -0149(81)90121 -7 � Gripenberg, S. , 1960. On the Alkalinity of Baltic Waters. J. Cons. int. Explor. Mer 26, 5– 20. doi: 10. 1093/icesjms/26. 1. 5 � Key, R. M. , Kozyr, A. , Sabine, C. L. , Lee, K. , Wanninkhof, R. , Bullister, J. L. , Feely, R. A. , Millero, F. J. , Mordy, C. , Peng, T. -H. , 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles 18, GB 4031. doi: 10. 1029/2004 GB 002247 � Land, P. E. , Shutler, J. D. , Findlay, H. S. , Girard-Ardhuin, F. , Sabia, R. , Reul, N. , Piolle, J. -F. , Chapron, B. , Quilfen, Y. , Salisbury, J. , Vandemark, D. , Bellerby, R. , Bhadury, P. , 2015. Salinity from Space Unlocks Satellite-Based Assessment of Ocean Acidification. Environ. Sci. Technol. 49, 1987– 1994. doi: 10. 1021/es 504849 s 36

References � Lee, K. , Tong, L. T. , Millero, F. J. , Sabine,

References � Lee, K. , Tong, L. T. , Millero, F. J. , Sabine, C. L. , Dickson, A. G. , Goyet, C. , Park, G. -H. , Wanninkhof, R. , Feely, R. A. , Key, R. M. , 2006. Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophysical Research Letters 33. doi: 10. 1029/2006 GL 027207 � Mc. Laughlin, K. , Weisberg, S. , Dickson, A. , Hofmann, G. , Newton, J. , Aseltine-Neilson, D. , Barton, A. , Cudd, S. , Feely, R. , Jefferds, I. , Jewett, E. , King, T. , Langdon, C. , Mc. Afee, S. , Pleschner-Steele, D. , Steele, B. , 2015. Core Principles of the California Current Acidification Network: Linking Chemistry, Physics, and Ecological Effects. Oceanography 25, 160– 169. doi: 10. 5670/oceanog. 2015. 39 � Millero, F. J. , Lee, K. , Roche, M. , 1998. Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry 60, 111– 130. doi: 10. 1016/S 0304 -4203(97)00084 -4 � Park, P. K. , Webster, G. R. , Yamamoto, R. , 1969. Alkalinity Budget of the Columbia River 1. Limnol. Oceanogr. 14, 559– 567. doi: 10. 4319/lo. 1969. 14. 4. 0559 � Salisbury, J. , Vandemark, D. , Jönsson, B. , Balch, W. , Chakraborty, S. , Lohrenz, S. , Chapron, B. , Hales, B. , Mannino, A. , Mathis, J. , Reul, N. , Signorini, S. , Wanninkhof, R. , Yates, K. , 2015. How Can Present and Future Satellite Missions Support Scientific Studies that Address Ocean Acidification? Oceanography 25, 108– 121. doi: 10. 5670/oceanog. 2015. 35 � Takahashi, T. , Sutherland, S. C. , Chipman, D. W. , Goddard, J. G. , Ho, C. , Newberger, T. , Sweeney, C. , Munro, D. R. , 2014. Climatological distributions of p. H, p. CO 2, total CO 2, alkalinity, and Ca. CO 3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry 164, 95– 125. doi: 10. 1016/j. marchem. 2014. 06. 004 37