EVOLUTION OF VERY MASSIVE POPULATION III STARS T

  • Slides: 15
Download presentation
EVOLUTION OF VERY MASSIVE POPULATION III STARS T. Ohkubo, H. Umeda, K. Maeda, K.

EVOLUTION OF VERY MASSIVE POPULATION III STARS T. Ohkubo, H. Umeda, K. Maeda, K. Nomoto, T. Suzuki, S. Tsuruta, M. J. Rees First Stars III Workshop, July 16 -20 2007, Santa Fe, 1 NM, USA

I. INTRODUCTION Supernovae and Chemical evolution of the universe Big Bang only H, He

I. INTRODUCTION Supernovae and Chemical evolution of the universe Big Bang only H, He (metal-free) ? 1. 37 x 1010 years present O, Mg, Si, Ca Mn, Fe, Co, Ni First Stars Metal? core-collapse SNe (massive) Metal type Ia SNe (light) metal-rich universe Sun 2 Earth

II. OUR RECENT RESEARCH Ohkubo et al. Ap. J, 645, 1352, July 10, 2006

II. OUR RECENT RESEARCH Ohkubo et al. Ap. J, 645, 1352, July 10, 2006 Evolution zero-age main sequence to Fe-core collapse (initial model for explosion, UV photon supply) Explosion hydrodynamical calculation 2 dimensional jet like explosion Nucleosynthesis comparison with observational abundance pattern 3

central temoperature Evolusionary track central density 4

central temoperature Evolusionary track central density 4

Explosion 1000 M model (our result of evolution) Code・・・ 2 D hydrodynamical code including

Explosion 1000 M model (our result of evolution) Code・・・ 2 D hydrodynamical code including gravity (Maeda & Nomoto 2003) explosion energy source・・・jet injection around BH d. Ejet/dt = (d. Macc/dt) c 2 :energy transformation efficiency BH Jet Disk (0. 002 – 0. 01) jet: jet angle(15 o) initial BH mass・・・ 100 M 5

Snapshot of explosion (density structure) 10 sec 50 sec 100 sec R/R* 5 sec

Snapshot of explosion (density structure) 10 sec 50 sec 100 sec R/R* 5 sec 6

Abundance pattern and comparison with observational data ① Compare Abundance Pattern by nucleosynthesis with

Abundance pattern and comparison with observational data ① Compare Abundance Pattern by nucleosynthesis with observational data (extremely metal-poor stars, M 82 gas, intracluster matter, inter galactic medium) Link ? ② (very-massive star formation) black hole mass increases by accretion final black hole mass? 7

Presupernova Composition 1000 M H e p Si 56 Ni O Mg Ne He

Presupernova Composition 1000 M H e p Si 56 Ni O Mg Ne He p Fe-core is >20% C ‘Fe’ F e For 25 M Model, Fe-core is < 10% (Umeda & Nomoto 2003) 8

Abundance Pattern ε=0. 0025、 jet=15 o EMP (extremely metal-poor) stars Metal-poor stars ([Fe/H]<-3) (Cayrel

Abundance Pattern ε=0. 0025、 jet=15 o EMP (extremely metal-poor) stars Metal-poor stars ([Fe/H]<-3) (Cayrel et al. 2004) there is discrepancy in [O/Fe] ε=0. 005、 jet=15 o ICM (intracluster matter) [O/Fe] < 0 , [Si/Fe] >0 : Consistent 9

M 82 hot gas Gas composition in M 82 (Origlia et al. 2004) 25

M 82 hot gas Gas composition in M 82 (Origlia et al. 2004) 25 M hypernova model Umeda & Nomoto (2002) Consistent rather than 25 M hypernova model ・[O/Fe]~-0. 3 ・ [Ne/Fe]~0, [Mg/Fe]~ 0. 3, [Si/Fe]~ 0. 2 Black hole mass 500 M ・・・consistent with IMBH mass 10

 • IGM (inter galactic medium) (redshift z: 2~4. 5) • Observation: [C/Si] <~

• IGM (inter galactic medium) (redshift z: 2~4. 5) • Observation: [C/Si] <~ -0. 5 (Aguirre et al. 2004) • Yields by PISNe: [C/Si] ~ -2. 0 -- -1. 7 • Our 1000 M yields: [C/Si] ~ -0. 78 ---0. 65 Consistent in order of magnitude with observational ratio 11

UV photon supply Log(Teff) ~ 5. 05 (4. 85 – 5. 0 for Pop

UV photon supply Log(Teff) ~ 5. 05 (4. 85 – 5. 0 for Pop III 15 – 90 M stars) (Tumlinson & Shull 2000) Ionizing photons (/s/M ) H I : 1. 6 × 1048 (16 times higher) He I : 1. 1 × 1048 (14 times higher) He II: 3. 8× 1047 (75 times higher ) than by Salpeter IMF (values with a Salpeter IMF) 12

UV photon supply and chemical contamination evolving stars UV photon supply exploding star chemical

UV photon supply and chemical contamination evolving stars UV photon supply exploding star chemical contamination • Nreionize / Nb (Number of UV photon supply per baryon) ~150 ( >> 10・・・necessary for reionization of IGM at z~4 ) Miralda-Escude&Rees 97 13

This work 1000 M model・・・core-collapse very-massive stars Energy (erg) 1056 1055 1054 1053 1052

This work 1000 M model・・・core-collapse very-massive stars Energy (erg) 1056 1055 1054 1053 1052 1051 this work Hypernova PISN normal SN 10 100 300 1000 Initial Mass 14

III. Summary/CONCLUSION (i) 1000 M stars ・・・UV photons efficiently supplied (ii) Final black hole

III. Summary/CONCLUSION (i) 1000 M stars ・・・UV photons efficiently supplied (ii) Final black hole is ~ 500 M ・・・consistent with IMBH mass (iii) Abundance pattern ・・・consistent with M 82 gas, ICM, IGM 15