Estimating Population Proportions Section 6 5 M A

  • Slides: 42
Download presentation
Estimating Population Proportions Section 6 -5 M A R I O F. T R

Estimating Population Proportions Section 6 -5 M A R I O F. T R I O L A Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 1

Notation Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 2

Notation Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 2

Notation p Population proportion Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 3

Notation p Population proportion Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 3

Notation p pˆ = (pronounced ‘p-hat’) Population proportion x Sample proportion n of x

Notation p pˆ = (pronounced ‘p-hat’) Population proportion x Sample proportion n of x successes in a sample of size n Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 4

Definition Point Estimate Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 5

Definition Point Estimate Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 5

Definition Point Estimate The sample proportion pˆ is the best point estimate of the

Definition Point Estimate The sample proportion pˆ is the best point estimate of the population proportion p. Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 6

Confidence Interval for Population Proportion pˆ – E < pˆ + E Copyright ©

Confidence Interval for Population Proportion pˆ – E < pˆ + E Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 7

Confidence Interval for Population Proportion pˆ – E < pˆ + E where E

Confidence Interval for Population Proportion pˆ – E < pˆ + E where E = za / 2 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman pˆ qˆ n 8

Confidence Interval for Population Proportion pˆ – E < pˆ + E where E

Confidence Interval for Population Proportion pˆ – E < pˆ + E where E = za / 2 pˆ qˆ n Margin of error of the estimate of p Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 9

Confidence Interval for Population Proportion pˆ – E < pˆ + E where E

Confidence Interval for Population Proportion pˆ – E < pˆ + E where E = za / 2 pˆ qˆ n Margin of error of the estimate of p Round to 3 significant digits Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 10

Determining Sample Size Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 11

Determining Sample Size Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 11

Determining Sample Size E= za / 2 Copyright © 1998, Triola, Elementary Statistics Addison

Determining Sample Size E= za / 2 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman pˆ qˆ n 12

Determining Sample Size E= za / 2 pˆ qˆ n (solve for n by

Determining Sample Size E= za / 2 pˆ qˆ n (solve for n by algebra) Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 13

Determining Sample Size E= za / 2 pˆ qˆ n (solve for n by

Determining Sample Size E= za / 2 pˆ qˆ n (solve for n by algebra) n= ( za / 2 )2 pˆ qˆ E 2 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 14

Determining Sample Size E= za / 2 pˆ qˆ n (solve for n by

Determining Sample Size E= za / 2 pˆ qˆ n (solve for n by algebra) n= ( za / 2 )2 pˆ qˆ E 2 ˆ (use when some estimate of p is known from a previous study, etc. ) Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 15

pˆ qˆ 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6

pˆ qˆ 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 0. 8 0. 7 0. 6 0. 5 0. 4 0. 3 0. 2 0. 1 0. 09 0. 16 0. 21 0. 24 0. 25 0. 24 0. 21 0. 16 0. 09 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 16

pˆ qˆ 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6

pˆ qˆ 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 0. 8 0. 7 0. 6 0. 5 0. 4 0. 3 0. 2 0. 1 0. 09 0. 16 0. 21 0. 24 0. 25 0. 24 0. 21 0. 16 0. 09 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 17

ˆ ( za / 2 )2 pˆ qˆ If no estimate of p is

ˆ ( za / 2 )2 pˆ qˆ If no estimate of p is known: n= E 2 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 18

ˆ ( za / 2 )2 pˆ qˆ If no estimate of p is

ˆ ( za / 2 )2 pˆ qˆ If no estimate of p is known: n= E 2 replace pˆ qˆ with 0. 25 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 19

ˆ ( za / 2 )2 pˆ qˆ If no estimate of p is

ˆ ( za / 2 )2 pˆ qˆ If no estimate of p is known: n= n= E 2 replace pˆ qˆ with 0. 25 ( za / 2 (0. 25) 2 ) E 2 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 20

ˆ ( za / 2 )2 pˆ qˆ If no estimate of p is

ˆ ( za / 2 )2 pˆ qˆ If no estimate of p is known: n= n= E 2 replace pˆ qˆ with 0. 25 ( za / 2 (0. 25) 2 ) E 2 If n is not a whole number, round it up to the next higher whole number. Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 21

Two formulas for proportion sample size n= n= (z a / 2 2 )

Two formulas for proportion sample size n= n= (z a / 2 2 ) E 2 pˆ qˆ ( za / 2 )2(0. 25) E 2 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 22

Estimating a Population Variance Section 6 -6 M A R I O F. T

Estimating a Population Variance Section 6 -6 M A R I O F. T R I O L A Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 23

Important Assumption: The population has normally distributed values. Copyright © 1998, Triola, Elementary Statistics

Important Assumption: The population has normally distributed values. Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 24

Chi-Square Distribution Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 25

Chi-Square Distribution Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 25

Chi-Square Distribution X = 2 (n – 1) s s 2 2 Formula 6

Chi-Square Distribution X = 2 (n – 1) s s 2 2 Formula 6 -7 where n = sample size s 2 = sample variance s 2 = population variance Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 26

2 X Critical Values found in Table A-4 v Formula card v Appendix v

2 X Critical Values found in Table A-4 v Formula card v Appendix v Degrees of freedom (df ) = n – 1 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 27

Properties of the Distribution of the Chi-Square Statistic 1. The chi-square distribution is not

Properties of the Distribution of the Chi-Square Statistic 1. The chi-square distribution is not symmetric, unlike the normal and Student t distributions. Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 28

Properties of the Distribution of the Chi-Square Statistic 1. The chi-square distribution is not

Properties of the Distribution of the Chi-Square Statistic 1. The chi-square distribution is not symmetric, unlike the normal and Student t distributions. Not symmetric 0 All values are nonnegative c 2 Figure 6 -7 Chi-Square Distribution Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 29

Properties of the Distribution of the Chi-Square Statistic 1. The chi-square distribution is not

Properties of the Distribution of the Chi-Square Statistic 1. The chi-square distribution is not symmetric, unlike the normal and Student t distributions. As the number of degrees of freedom increases, the distribution becomes more symmetric. (continued) Not symmetric df = 10 df = 20 0 All values are nonnegative Figure 6 -7 Chi-Square Distribution c 2 0 5 10 15 20 25 30 35 40 45 c 2 Figure 6 -8 Chi-Square Distribution for df = 10 and df = 20 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 30

Properties of the Distribution of the Chi-Square Statistic (continued) 2. The values of chi-square

Properties of the Distribution of the Chi-Square Statistic (continued) 2. The values of chi-square can be zero or positive, but they cannot be negative. 3. The chi-square distribution is different for each number of degrees of freedom, which is df = n – 1 in this section. As the number increases, the chisquare distribution approaches a normal distribution. • In Table A-4, each critical value of X 2 corresponds to an area given in the top row of the table, and that area represents the total region located to Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 31

Degrees of freedom Chi-Square (x 2) Distribution Table A-4 Area to the Right of

Degrees of freedom Chi-Square (x 2) Distribution Table A-4 Area to the Right of the Critical Value 0. 995 0. 99 0. 975 0. 90 0. 10 0. 05 0. 025 0. 01 1 2 3 4 5 _ 0. 010 0. 072 0. 207 0. 412 _ 0. 020 0. 115 0. 297 0. 554 0. 001 0. 051 0. 216 0. 484 0. 831 0. 004 0. 103 0. 352 0. 711 1. 145 0. 016 0. 211 0. 584 1. 064 1. 610 2. 706 4. 605 6. 251 7. 779 9. 236 3. 841 5. 991 7. 815 9. 488 11. 071 5. 024 7. 378 9. 348 11. 143 12. 833 6. 635 9. 210 11. 345 13. 277 15. 086 7. 879 10. 597 12. 838 14. 860 16. 750 6 7 8 9 10 0. 676 0. 989 1. 344 1. 735 2. 156 0. 872 1. 239 1. 646 2. 088 2. 558 1. 237 1. 690 2. 180 2. 700 3. 247 1. 635 2. 167 2. 733 3. 325 3. 940 2. 204 2. 833 3. 490 4. 168 4. 865 10. 645 12. 017 13. 362 14. 684 15. 987 12. 592 14. 067 15. 507 16. 919 18. 307 14. 449 16. 013 17. 535 19. 023 20. 483 16. 812 18. 475 20. 090 21. 666 23. 209 18. 548 20. 278 21. 955 23. 589 25. 188 11 12 13 14 15 2. 603 3. 074 3. 565 4. 075 4. 601 3. 053 3. 571 4. 107 4. 660 5. 229 3. 816 4. 404 5. 009 5. 629 6. 262 4. 575 5. 226 5. 892 6. 571 7. 261 5. 578 6. 304 7. 042 7. 790 8. 547 17. 275 18. 549 19. 812 21. 064 22. 307 19. 675 21. 026 22. 362 23. 685 24. 996 21. 920 23. 337 24. 736 26. 119 27. 488 24. 725 26. 217 27. 688 29. 141 30. 578 26. 757 28. 299 29. 819 31. 319 32. 801 16 17 18 19 20 5. 142 5. 697 6. 265 6. 844 7. 434 5. 812 6. 408 7. 015 7. 633 8. 260 6. 908 7. 564 8. 231 8. 907 9. 591 7. 962 8. 672 9. 390 10. 117 10. 851 9. 312 10. 085 10. 865 11. 651 12. 443 23. 542 24. 769 25. 989 27. 204 28. 412 26. 296 27. 587 28. 869 30. 144 31. 410 28. 845 30. 191 31. 526 32. 852 34. 170 32. 000 33. 409 34. 805 36. 191 37. 566 34. 267 35. 718 37. 156 38. 582 39. 997 21 22 23 24 25 8. 034 8. 643 9. 260 9. 886 10. 520 8. 897 9. 542 10. 196 10. 856 11. 524 10. 283 10. 982 11. 689 12. 401 13. 120 11. 591 12. 338 13. 091 13. 848 14. 611 13. 240 14. 042 14. 848 15. 659 16. 473 29. 615 30. 813 32. 007 33. 196 34. 382 32. 671 33. 924 35. 172 36. 415 37. 652 35. 479 36. 781 38. 076 39. 364 40. 646 38. 932 40. 289 41. 638 42. 980 44. 314 41. 401 42. 796 44. 181 45. 559 46. 928 26 27 28 29 30 11. 160 11. 808 12. 461 13. 121 13. 787 12. 198 12. 879 13. 565 14. 257 14. 954 13. 844 14. 573 15. 308 16. 047 16. 791 15. 379 16. 151 16. 928 17. 708 18. 493 17. 292 18. 114 18. 939 19. 768 20. 599 35. 563 36. 741 37. 916 39. 087 40. 256 38. 885 40. 113 41. 337 42. 557 43. 773 41. 923 43. 194 44. 461 45. 722 46. 979 45. 642 46. 963 48. 278 49. 588 50. 892 48. 290 49. 645 50. 993 52. 336 53. 672 40 50 60 70 80 90 100 20. 707 27. 991 35. 534 43. 275 51. 172 59. 196 67. 328 22. 164 29. 707 37. 485 45. 442 53. 540 61. 754 70. 065 24. 433 32. 357 40. 482 48. 758 57. 153 65. 647 74. 222 26. 509 34. 764 43. 188 51. 739 60. 391 69. 126 77. 929 29. 051 37. 689 46. 459 55. 329 64. 278 73. 291 82. 358 51. 805 63. 167 74. 397 85. 527 96. 578 107. 565 118. 498 55. 758 67. 505 79. 082 90. 531 101. 879 113. 145 124. 342 59. 342 71. 420 83. 298 95. 023 106. 629 118. 136 129. 561 63. 691 76. 154 88. 379 100. 425 112. 329 124. 116 135. 807 66. 766 79. 490 91. 952 104. 215 116. 321 128. 299 140. 169 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 0. 005 32

Critical Values: Table A-4 Areas to the right of each tail 0. 025 0

Critical Values: Table A-4 Areas to the right of each tail 0. 025 0 c 2 = 2. 700 L c 2 = 19. 023 R (df = 9) To obtain this critical value, locate 9 at the left column for degrees of freedom and then locate 0. 975 across the top. The total area to the right of this critical value is 0. 975, which we get by subtracting 0. 025 from 1. To obtain this critical value, locate 9 at the left column for degrees of freedom and then locate 0. 025 across the top. Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 33

Estimators of s 2 The sample variance s is the best point estimate of

Estimators of s 2 The sample variance s is the best point estimate of the population variance s. 2 2 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 34

Confidence Interval for the Population Variance s 2 or s Copyright © 1998, Triola,

Confidence Interval for the Population Variance s 2 or s Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 35

Confidence Interval for the Population Variance s 2 or s (n – 1)s 2

Confidence Interval for the Population Variance s 2 or s (n – 1)s 2 X 2 R < s 2< Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman (n – 1)s 2 X 2 L 36

Confidence Interval for the Population Variance s 2 or s (n – 1)s 2

Confidence Interval for the Population Variance s 2 or s (n – 1)s 2 Right-tail CV X 2 R < s 2< Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman (n – 1)s 2 X 2 L 37

Confidence Interval for the Population Variance s 2 or s (n – 1)s 2

Confidence Interval for the Population Variance s 2 or s (n – 1)s 2 Right-tail CV X 2 R < s 2< Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman (n – 1)s 2 X 2 L Left-tail CV 38

Confidence Interval for the Population Variance s 2 or s (n – 1)s 2

Confidence Interval for the Population Variance s 2 or s (n – 1)s 2 X Right-tail CV 2 R (n – 1)s 2 X 2 R < s 2< < s < Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman (n – 1)s 2 X 2 L Left-tail CV (n – 1)s 2 2 XL 39

Round off Rules for Confidence Interval Estimates of s or s 2 1. When

Round off Rules for Confidence Interval Estimates of s or s 2 1. When using the original set of data to construct a confidence interval, round the confidence interval limits to one more decimal place than is used for the original set of data. 2. When the original set of data is unknown and only the summary statistics (n, s) are used, round the confidence interval limits to the same number of decimal places used for the sample standard deviation or variance. Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 40

Table 6 -2 Determining Sample Size Copyright © 1998, Triola, Elementary Statistics Addison Wesley

Table 6 -2 Determining Sample Size Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 41

Table 6 -2 Determining Sample Size for s 2 Sample Size for s To

Table 6 -2 Determining Sample Size for s 2 Sample Size for s To be 95% confident of the value of s 2 , the sample To be 95% confident that s 2 is within size n should be at least of the value of s , the sample size n should be at least 1% 77, 207 1% 19, 204 5% 10% 3, 148 805 5% 10% 767 191 20% 30% 40% 50% 210 97 56 37 20% 30% 40% 50% 47 20 11 7 To be 95% confident of the value of s 2 , the sample To be 95% confident that s 2 is within size n should be at least of the value of s , the sample size n should be at least 1% 133, 448 1% 33, 218 5% 10% 20% 30% 40% 5, 457 1, 401 368 171 100 67 5% 10% 20% 30% 40% 50% 1, 335 84 37 21 13 Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 42