Epilepsy Neurogenetics American Epilepsy Society Outline A Epilepsy

  • Slides: 33
Download presentation
Epilepsy Neurogenetics American Epilepsy Society

Epilepsy Neurogenetics American Epilepsy Society

Outline A. Epilepsy etiology B. Genetic causes of epilepsy C. Genetic epidemiology of epilepsy

Outline A. Epilepsy etiology B. Genetic causes of epilepsy C. Genetic epidemiology of epilepsy D. Genetic counseling in epilepsy American Epilepsy Society 2009 G –Slide 2

A. Epilepsy etiology American Epilepsy Society 2009 G –Slide 3

A. Epilepsy etiology American Epilepsy Society 2009 G –Slide 3

Etiology of Epilepsy From: Annegers JF. The Epidemiology of epilepsy. In: Elaine Wyllie. The

Etiology of Epilepsy From: Annegers JF. The Epidemiology of epilepsy. In: Elaine Wyllie. The Treatment of Epilepsy. American Epilepsy Society 2009 G –Slide 4

B. Genetic causes of epilepsy American Epilepsy Society 2009 G –Slide 5

B. Genetic causes of epilepsy American Epilepsy Society 2009 G –Slide 5

Genetic causes of epilepsy • Microscopic: strong polygenic dysfunction • Chromosomal aberations • Angelman/

Genetic causes of epilepsy • Microscopic: strong polygenic dysfunction • Chromosomal aberations • Angelman/ Prader-Willi syndrome – 15 q 11 -13 region (UBE 3 A gene defect and likely many other genes) • Submicroscopic: monogenic-plus defects • small deletions, insertions, point mutations, etc. American Epilepsy Society 2009 G –Slide 6

Genetic causes of epilepsy: Submicroscopic genetic defects 1. Defects of neuronal metabolism 2. Defects

Genetic causes of epilepsy: Submicroscopic genetic defects 1. Defects of neuronal metabolism 2. Defects of network development 3. Defects of membrane and synaptic signaling Adapted from: Noebels JL. Annu Rev Neurosci. 2003; 26: 599 -625. American Epilepsy Society 2009 G –Slide 7

Defects of neuronal metabolism a. Energy deficiency b. Storage of the metabolic product c.

Defects of neuronal metabolism a. Energy deficiency b. Storage of the metabolic product c. Toxic effect d. Dysfunction of neurotransmitter systems e. Vitamin/Co-factor dependency Adapted from Wolf et al. 2007 American Epilepsy Society 2009 G –Slide 8

Inborn metabolic errors: Energy deficiency 1. Mitochondrial disorders: • 20 – 60% of children

Inborn metabolic errors: Energy deficiency 1. Mitochondrial disorders: • 20 – 60% of children w/ mt disorders develop epilepsy 1 (Darin et al. 2001) • Myoclonic seizures+/- partial, tonic, clonic, TC: most common • MR common • ↓ ATP production → unstable membrane potential MERRF: mt gene for t. RNA-Lys • Onset ~20 yoa, progressive MC epilepsy, photosensitivty, and giant SSEP MELAS: mt gene for t. RNA-Leu Leigh syndrome: mutations in mt or nuclear-encoded subunits of complex I of the mitochondrial respiratory chain Alpers: nuclear polymerase gama (POLG-A) gene • hepato-cerebral disorder • childhood onset due to Darin et al. 2001 American Epilepsy Society 2009 G –Slide 9

Inborn metabolic errors: Energy deficiency 2. Creatine metabolism disorders: • Impaired creatine transport into

Inborn metabolic errors: Energy deficiency 2. Creatine metabolism disorders: • Impaired creatine transport into the brain • Impaired creatine synthesis GAMT deficiency Epilepsy: seizures (West sx) Dx: ↑ excretion of the guanidino compounds in the urine MR spectroscopy shows absent Cr and Cr. P 04 peak Tx: Cr suplementation ↓ dietary arginine, supplement ornithine American Epilepsy Society 2009 G –Slide 10

Inborn metabolic errors: Storage of the metabolic product • Tay-Sachs: • Sialidosis I •

Inborn metabolic errors: Storage of the metabolic product • Tay-Sachs: • Sialidosis I • NCL (Batten’s disease): • MC, atypical absence and other sz • szs non specific; associated with dev delay • lysosomal enzymes: palmitoyl protein thioesterase 1 PPT 1/gene (Cl. N 1), tripeptidylpeptidase 1 (TPP 1/CLN 2) • CLN 3, CLN 5, CLN 6 and CLN 8: mutations in genes encoding proteins of unknown functions. • congenital form of NCL (CLN 10: deficiency of cathepsin D. (von Schantz et al. BMC Genomics. 2008; 9: 146. ) American Epilepsy Society 2009 G –Slide 11

Inborn metabolic errors: Storage of the metabolic product Progressive myoclonic epilepsies Lafora progressive MC

Inborn metabolic errors: Storage of the metabolic product Progressive myoclonic epilepsies Lafora progressive MC epilepsy Onset late childhood or teenage years Progressive neurological detrioration Stimulus sensitive GTC, Absence, and MC seizures Death in 10 years Path: intracellular polyglucoasan inclusions (brain, liver, skin) Genetics: 3 loci EPM 2 A (laforin): 6 q 24 NHLRC 1 (EPM 2 B) malin: 6 p 22 E 3 ubiuqitin ligase that ubiquitinates and promotes degradation of laforin EPM 2 C? Disorder of glycogen metabolisms? ? American Epilepsy Society 2009 G –Slide 12

Defects in neuronal metabolisms Inborn metabolic errors: Toxic effects 1. Urea cycle defects 2.

Defects in neuronal metabolisms Inborn metabolic errors: Toxic effects 1. Urea cycle defects 2. AA disorder • PKU • MSUD 3. OA disorders Methylmalonic, propionic acidemia, glutaric aciduria: if treated → development of szs is preventable 4. Purine and pyrimidine metabolic disorders American Epilepsy Society 2009 G –Slide 13

Defects in neuronal metabolisms Inborn metabolic errors: Toxic effects 5. Progressive Myoclonic Epilepsies EPM

Defects in neuronal metabolisms Inborn metabolic errors: Toxic effects 5. Progressive Myoclonic Epilepsies EPM 1 – Unverricht-Lundborg disease Age of onset 6 -16 yrs Stimulus sensitive MC TC SZS Genetics: AR inheritance CSTB gene (cystatin B) Protease Inhibitor (i. e. cathepsins, exact function unknown) American Epilepsy Society 2009 G –Slide 14

Defects in neuronal metabolisms Inborn metabolic errors: Dysfunction of neurotransmitter systems Monoamine metabolism Glycine

Defects in neuronal metabolisms Inborn metabolic errors: Dysfunction of neurotransmitter systems Monoamine metabolism Glycine metabolism GABA Metabolism American Epilepsy Society 2009 G –Slide 15

Defects in neuronal metabolisms Inborn metabolic errors: Vitamin or Co-factor Dependency Pyridoxine-dependent epilepsy •

Defects in neuronal metabolisms Inborn metabolic errors: Vitamin or Co-factor Dependency Pyridoxine-dependent epilepsy • Typical: early onset • • • Multiple sz types Prompt response to B 6 i. v. 100 mg Resistant to treatment with antiepileptic medications Congenital structural brain abnormalities may be present Atypical: late onset <3 yoa • • No brain abnormalities Sz onset with febrile illness Initial response to AED B 6 at 100 mg PO QD - response within 1 -2 days American Epilepsy Society 2009 G –Slide 16

Defects in neuronal metabolisms Inborn metabolic errors: Vitamin or Co-factor Dependency PNPO epilepsy (pyridox(am)ine

Defects in neuronal metabolisms Inborn metabolic errors: Vitamin or Co-factor Dependency PNPO epilepsy (pyridox(am)ine phosphate oxidase) PNPO Pyridoxine phosphate → pyridoxal phosphate B 6 unresponsive epilepsy Tx: pyridoxal phosphate Folinic Acid responsive Szs AED resistant szs in newborn Trial of folinic acid if B 6 and pyridoxal phosphate ineffective Biotinidase Holocarboxylase deficiency Alopecia and dermatitis Epilepsy onset 3 – 4 mths (infantile spasms) TX: Biotin 5 -20 mg/d American Epilepsy Society 2009 G –Slide 17

Defects of network development • Cell proliferation and specification • FCD (focal cortical dysplasia)

Defects of network development • Cell proliferation and specification • FCD (focal cortical dysplasia) • Tuberous sclerosis • Neuronal migration • Lisencephaly • Heterotopia • Late cortical organization • Polymicrogyria American Epilepsy Society 2009 G –Slide 18

Defects of network development: Tuberous sclerosis • Multisystem AD • Variable penetrance of clinical

Defects of network development: Tuberous sclerosis • Multisystem AD • Variable penetrance of clinical findings • Neurologic symptoms: • Dermatologic • Renal • Cardiac • Pulmonary • Epilepsy 20 -30% infantile spasms, MR, autism • Facial angiofibroma • Shagreen patch • Hypopigmented macules • Renal angiolipomas • Rhabdomyomas • lymphangiomatosis American Epilepsy Society 2009 G –Slide 19

Defects of network development Focal Cortical Dysplasia • Cytoarchitectural similarities to TS • Higher

Defects of network development Focal Cortical Dysplasia • Cytoarchitectural similarities to TS • Higher incidence of mild potentially pathogenic sequence changes in TSC 1 gene in cases vs. controls • Other genes in the downstream cascade involved • m. TOR kinase and its target proteins Ljungberg MC et al. Ann Neurol. 2006; 60(4): 420 -9 American Epilepsy Society 2009 G –Slide 20

Defects of network development Lisencephaly • Defective neuronal migration • 6 genes: LIS 1,

Defects of network development Lisencephaly • Defective neuronal migration • 6 genes: LIS 1, DCX, TUBA 1 A, RELN, VLDLR, ARX • Lisencephally: DCX (males), LIS 1, TUBA 1 A • Subcortical band heterotopia DCX in females, rarely in males; LIS 1 • Miller-Dieker Syndrome (co-deletion LIS 1 -YWHAE) • Lissencephally with cerebellar hypoplasia (RELN, VLDLR) • X-linked lisencephaly with abnormal genitalia (ARX) American Epilepsy Society 2009 G –Slide 21

Defects of membrane and synaptic signaling • Ion channels • Voltage gated: Na, Ca,

Defects of membrane and synaptic signaling • Ion channels • Voltage gated: Na, Ca, K, Cl • Ligand gated: GABAAR, nicotinic acetylcholine receptor a, b subunits (CHRNA, CHRNAB) • Signaling molecules • Associated with ion channels • Interact with ion channels American Epilepsy Society 2009 G –Slide 22

Defects of membrane and synaptic signaling Familial Epilepsy Syndromes Benign familial neonatal seizures KCNQ

Defects of membrane and synaptic signaling Familial Epilepsy Syndromes Benign familial neonatal seizures KCNQ 2 KCNQ 3 Benign familial neonatal-infantile seizures SCN 2 A GEFS+, febrile seizures SCN 1 A SCN 1 B GABRG 2 GABRD Dravet syndrome American Epilepsy Society 2009 SCN 1 A GABRG 2 G –Slide 23

Defects of membrane and synaptic signaling Familial Epilepsy Syndromes Childhood absence epilepsy GABRG 2

Defects of membrane and synaptic signaling Familial Epilepsy Syndromes Childhood absence epilepsy GABRG 2 CACNA 1 H Juvenile myoclonic epilepsy GABRA 1 EFHC 1 Idiopathic generalized epilepsy (variable phenotype) CLCN 2 Autosomal dominant nocturnal frontal lobe epilepsy CHRNA 4 CHRNB 2 CHRNA 2 American Epilepsy Society 2009 G –Slide 24

Defects of membrane and synaptic signaling Familial Epilepsy Syndromes Autosomal dominant partial epilepsy with

Defects of membrane and synaptic signaling Familial Epilepsy Syndromes Autosomal dominant partial epilepsy with auditory features LGI 1 Familial mesial temporal lobe epilepsies 4 q, 18 q, 1 q Familial occipito-temporal lobe epilepsy 9 q Familial partial epilepsy with variable foci Partial epilepsy with pericentral spikes American Epilepsy Society 2009 22 q 12 4 p 15 G –Slide 25

C. Genetic epidemiology of epilepsy American Epilepsy Society 2009 G –Slide 26

C. Genetic epidemiology of epilepsy American Epilepsy Society 2009 G –Slide 26

Genetic epidemiology of epilepsy > 2/3 of all epilepsies genetic 1%: familial: single gene

Genetic epidemiology of epilepsy > 2/3 of all epilepsies genetic 1%: familial: single gene with major effect + genetic and environmental modifiers 99%: sporadic: polygenic (many genes with variable degree of effect + other modifiers) American Epilepsy Society 2009 G –Slide 27

Genetic epidemiology of epilepsy Febrile seizures • 3% baseline population prevalence in children 6

Genetic epidemiology of epilepsy Febrile seizures • 3% baseline population prevalence in children 6 months – 6 years old • Risk factors for familial recurrence of FS • Affected sib: 8 – 12% risk (RR = 3 -5) • Multiple affected family members: < 50% • FS and risk of epilepsy later in life • 4% at 7 years • 7% at 25 years American Epilepsy Society 2009 G –Slide 28

American Epilepsy Society 2009 GSlide 29

American Epilepsy Society 2009 GSlide 29

D. Genetic counseling in epilepsy American Epilepsy Society 2009 G –Slide 30

D. Genetic counseling in epilepsy American Epilepsy Society 2009 G –Slide 30

Genetic counseling in epilepsy • Straightforward: • chromosomal disorders • 100% penetrant epilepsy syndromes

Genetic counseling in epilepsy • Straightforward: • chromosomal disorders • 100% penetrant epilepsy syndromes with AD, AR, XL inheritance • Almost straightforward: • de novo mutations in familial epilepsy syndromes with incomplete penetrance (i. e. Dravet syndrome) • Consider germline mosaicism • Complicated: • Familial epilepsy syndromes with incomplete penetrance • Sporadic epilepsies American Epilepsy Society 2009 G –Slide 31

Genetic counseling in Epilepsy Important questions to ask • Seizure type(s) • Seizure triggers

Genetic counseling in Epilepsy Important questions to ask • Seizure type(s) • Seizure triggers • Epilepsy risk factors (CNS insult, CNS infections, etc) • Age of onset • Family history of epilepsy in the immediate AND extended family • Presence of neurological dysfunction other than seizures American Epilepsy Society 2009 G –Slide 32

Recommended reading 1. Wolf NI et al. Epilepsy in inborn errors in metabolism. Epileptic

Recommended reading 1. Wolf NI et al. Epilepsy in inborn errors in metabolism. Epileptic Disord 2005; 7: 67 -81. 2. Sisodyia S. et al. Genetics of epilepsy: Epilepsy Research Foundation workshop report. Epileptic Disord 2007; 9: 194 -236. 3. Crino PB et al. The Tuberous Sclerosis Complex. N Engl J Med 2006; 355: 1345 -56. 4. Winawer MR and Shinnar S. Genetic Epidemiology of Epilepsy or What Do We Tell Families. 5. Helbig I et al. Navigating the channels and beyond: unravelling the genetics of epilepsies. Lancet Neurol 2008; 7: 231 -45. 6. Pearl P et al. The Pediatric Neurotransmitter Disorders. J Child Neurol 2007; 22: 606 -616. 7. Guerrini R, Dobyns WB, and Barkovich J. Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends in Neuroscience 2007; 31: 154 -162. American Epilepsy Society 2009 G –Slide 33