ENSO sensitivity to change in stratification in CMIP

  • Slides: 36
Download presentation
ENSO sensitivity to change in stratification in CMIP 3 Boris Dewitte Sulian Thual, Sang-Wook

ENSO sensitivity to change in stratification in CMIP 3 Boris Dewitte Sulian Thual, Sang-Wook Yeh, Soon-Il An, Ali Belmadani CLIVAR Workshop, Paris, France, 17 -19 November 2010 New strategies for evaluating ENSO processes in climate models

Impact of climate change on the mean stratification in ensemble models ΔT (2 x.

Impact of climate change on the mean stratification in ensemble models ΔT (2 x. CO 2 – PI) Yeh et al. (2009) Dinezio et al. (2009)

Conclusions/Perspectives • The characteristics of thermocline (depth, sharpness, intensity) needs to be taken into

Conclusions/Perspectives • The characteristics of thermocline (depth, sharpness, intensity) needs to be taken into account for determining the stability of ENSO • SODA tells us that an increased stratification leads to more energetic and low-frequency ENSO (Climate change paradox. . ) • Need to understand the impact of stratification changes on ENSO non-linearities.

Motivation Understand the physical mechanism associated to the ‘rectification’ of ENSO variability/stability by the

Motivation Understand the physical mechanism associated to the ‘rectification’ of ENSO variability/stability by the change in mean state? ? t~6 months η~10 -20 years t 2~? k~? Cf. Battisti and Hirst (1989)

Change in thermocline depth at decadal timescales On thermocline depth: small amplitude (Wang and

Change in thermocline depth at decadal timescales On thermocline depth: small amplitude (Wang and An, 2001) Levitus data

Change in mean temperature associated to the 1976/77 climate shift T(1960 -2001) T(1980 -1997)-T(1960

Change in mean temperature associated to the 1976/77 climate shift T(1960 -2001) T(1980 -1997)-T(1960 -1975) D 20 (1980 -1997) D 20 (1960 -1975) (Moon et al. , 2004; Dewitte et al. , 2009)

 • The ‘Moon pattern’ indicates that change in mean state cannot be account

• The ‘Moon pattern’ indicates that change in mean state cannot be account for just one baroclinic mode. . ! T(1980 -1997)-T(1960 -1975) (modes 1 to 3)

Sensitivity of ENSO to stratification • Ocean dynamics perspective Shallow-water equations Stratification defined by

Sensitivity of ENSO to stratification • Ocean dynamics perspective Shallow-water equations Stratification defined by (c, H) Multimode context Stratification defined by (cn, Pn)

A ‘finer’ representation of thermocline allows for taking into account the ‘loss’ of energy

A ‘finer’ representation of thermocline allows for taking into account the ‘loss’ of energy associated to vertical propagation: Implication for ENSO energetics and feedbacks Interannual variability of vertical displacements in a OGCM simulation (1985 -1994) (Dewitte and Reverdin, 2000)

Sensitivity of ENSO to stratification • Thermodynamics perspective Nonlinear Dynamical Heating Zonal Advective Feedback

Sensitivity of ENSO to stratification • Thermodynamics perspective Nonlinear Dynamical Heating Zonal Advective Feedback Thermocline Feedback

Mean circulation ( , ) in CMIP 3 1 : BCCR-BCM 2. 0 2

Mean circulation ( , ) in CMIP 3 1 : BCCR-BCM 2. 0 2 : CCCMA-CGCM 3. 1 3 : CCCMA-CGCM 3. 1 (t 63) 4 : CNRM-CM 3 5 : CSIRO-MK 3. 0 6 : CSIRO-MK 3. 5 7 : GFDL-CM 2. 0 8 : GFDL-CM 2. 1 9 a : GISS-AOM (run 1) 9 b : GISS-AOM (run 2) 11 : GISS-MODEL-E-R 12 : IAP-FGOALS 1. 0 -g 13 : INGV-ECHAM 4 14 : INM-CM 3. 0 15 : IPSL-CM 4 16 : MIROC 3. 2 -HIRES 17 : MIROC 3. 2 -MEDRES 18 : MIUB-ECHO-g 19 : MPI-ECHAM 5 20 : MRI-CGCM 2. 3. 2 A 21 : NCAR-CCSM 3. 0 22 : UKMO-Had. CM 3 23 : UKMO-Had. Gem 1 Belmadani et al. (2010)

Thermocline depth bias in CMIP 3 1 : BCCR-BCM 2. 0 2 : CCCMA-CGCM

Thermocline depth bias in CMIP 3 1 : BCCR-BCM 2. 0 2 : CCCMA-CGCM 3. 1 3 : CCCMA-CGCM 3. 1 (t 63) 4 : CNRM-CM 3 5 : CSIRO-MK 3. 0 6 : CSIRO-MK 3. 5 7 : GFDL-CM 2. 0 8 : GFDL-CM 2. 1 9 a : GISS-AOM (run 1) 9 b : GISS-AOM (run 2) 11 : GISS-MODEL-E-R 12 : IAP-FGOALS 1. 0 -g 13 : INGV-ECHAM 4 14 : INM-CM 3. 0 15 : IPSL-CM 4 16 : MIROC 3. 2 -HIRES 17 : MIROC 3. 2 -MEDRES 18 : MIUB-ECHO-g 19 : MPI-ECHAM 5 20 : MRI-CGCM 2. 3. 2 A 21 : NCAR-CCSM 3. 0 22 : UKMO-Had. CM 3 23 : UKMO-Had. Gem 1

Sensitivity of ENSO to stratification • Thermodynamics perspective Nonlinear Dynamical Heating Zonal Advective Feedback

Sensitivity of ENSO to stratification • Thermodynamics perspective Nonlinear Dynamical Heating Zonal Advective Feedback Thermocline Feedback

The Jin twostrip model (An and Jin, 2001) ~3°N Equator Hmix Rossby waves (hn)

The Jin twostrip model (An and Jin, 2001) ~3°N Equator Hmix Rossby waves (hn) y=yn he=r. W hn hn=r. E he y=0° Kelvin waves (he, ue) y=0°-> y=yn->

Solution of the mode [Xµ=X 0. ea. t. cos(β. t +φ)] as a function

Solution of the mode [Xµ=X 0. ea. t. cos(β. t +φ)] as a function of coupling efficiency The Jin twostrip model (An and Jin, 2001) =1 α =0 (basin mode) β ~4 yrs ~ 9 months

Stability of ENSO as a function of thermocline depth Period Increased thermocline depth ------->lower

Stability of ENSO as a function of thermocline depth Period Increased thermocline depth ------->lower frequency stronger ENSO Growth rate Federov and Philander (2001)

 • Defining thermocline… • Depth (P 1) • Intensity, Sharpness (Pn, n>1) Gent

• Defining thermocline… • Depth (P 1) • Intensity, Sharpness (Pn, n>1) Gent and Luyten (1985)

Decadal variability of Pn – CNRM-CM 3 <P 1>=0. 5, <P 2>=0. 5, <P

Decadal variability of Pn – CNRM-CM 3 <P 1>=0. 5, <P 2>=0. 5, <P 3>=0. 2 d. D 20<0 ine ocl erm th d. D 20>0 Dewitte et al. (2007) d. Pn(t) 180° d. D 20>0 d. D 20<0 CNRM-CM 3 N 3 VAR 90°W

Conceptual Model (Thual et al. , 2010) comparable to the Jin two-strip model (Jin

Conceptual Model (Thual et al. , 2010) comparable to the Jin two-strip model (Jin 1997 b, An & Jin 2001) except for the ocean dynamics. Atmospherical component : Statistical relationship (SVD) with a coupling coefficient µ. Ocean dynamics : Kelvin and Rossby wave on 3 baroclinic modes : Kn, Rn Thermodynamics : Thermocline depth and zonal currents : H, U Variables :

Adimentionalised feedback intensity Thermodynamical feedbacks Thermocline feedback Zonal advective feedback SODA dataset (1958 -2008)

Adimentionalised feedback intensity Thermodynamical feedbacks Thermocline feedback Zonal advective feedback SODA dataset (1958 -2008)

Stability Analysis Find eigenvalues (a+ ib) of from Each eigenmode (a, b) has the

Stability Analysis Find eigenvalues (a+ ib) of from Each eigenmode (a, b) has the form Dominant eigenmode=ENSO mode Eigenvectors of the ENSO mode (µ=1)

Sensitivity to Stratification δ P 1(1 -δ), P 2(1+δ/2), P 3(1+δ/2) Stratification acts as

Sensitivity to Stratification δ P 1(1 -δ), P 2(1+δ/2), P 3(1+δ/2) Stratification acts as a coupling parameter, but with physical meaning.

Sensitivity of ENSO mode to stratification in the TD model Model parameters: P 1(1

Sensitivity of ENSO mode to stratification in the TD model Model parameters: P 1(1 -δ), P 2(1+δ/2), P 3(1+δ/2) frequency Growth rate

The 1976/77 Climate shifts: Pre-70 s to Post-70 s : Strong increase in stratification

The 1976/77 Climate shifts: Pre-70 s to Post-70 s : Strong increase in stratification (δ =120%). => Stronger, lower frequency ENSO Data: SODA

The 2000 shifts: Post-2000 : Slight decrease in stratification (δ =95%). => ENSO variability

The 2000 shifts: Post-2000 : Slight decrease in stratification (δ =95%). => ENSO variability displaced toward the west. Processes ? Data: SODA

Change in ENSO stability in the GFDL model

Change in ENSO stability in the GFDL model

 « Metrics » for the sensitivity to stratification change using the extended Jin’s

« Metrics » for the sensitivity to stratification change using the extended Jin’s two-strip model

2 x. CO 2 - PI EOF 1 of low-passed filtered T(x, z, y=0)

2 x. CO 2 - PI EOF 1 of low-passed filtered T(x, z, y=0) (PI runs) MRI GFDL Yeh et al. (2010)

Sensitivity of ENSO to a warming climate: GFDL versus MRI Yeh et al. (2010)

Sensitivity of ENSO to a warming climate: GFDL versus MRI Yeh et al. (2010) Change in feedback processes

Conclusions/Perspectives • The characteristics of thermocline (depth, sharpness, intensity) needs to be taken into

Conclusions/Perspectives • The characteristics of thermocline (depth, sharpness, intensity) needs to be taken into account for determining the stability of ENSO • SODA tells us that an increased stratification leads to more energetic and lower-frequency ENSO (Climate change paradox. ? . ) • Need to understand the impact of stratification changes on ENSO non-linearities.

 « Metrics » for the sensitivity to stratification change using the extended Jin’s

« Metrics » for the sensitivity to stratification change using the extended Jin’s two-strip model

Low frequency change of temperature (EOF 1) in the MRI and GFDL models MRI

Low frequency change of temperature (EOF 1) in the MRI and GFDL models MRI GFDL Change in stratification tends to project on the high-order or « very slow » modes (n>3) impact Ekman layer physics Change in stratification does project on the gravest modes (n=1, 3) Impact ENSO stability

Change in feedback processes Yeh et al. (2010)

Change in feedback processes Yeh et al. (2010)

Yeh et al. (2010)

Yeh et al. (2010)

Low frequency change of temperature (EOF 1) in CMIP 3 MIROC 3_3_HIRES MIROC 3_3_MEDRES

Low frequency change of temperature (EOF 1) in CMIP 3 MIROC 3_3_HIRES MIROC 3_3_MEDRES MRI_CGCM 2_3_2 A NCAR_CCSM 3_0 MPI_ECHAM 5 UKMO_HADCM 3

CCCMA_CGCM 3_1_t 63 CNRM_CM 3 CSIRO_MK 3_5 GFDL_CM 2_0 INMCM 3_0 MIUB_ECHO_G CCCMA_CGCM 3_1

CCCMA_CGCM 3_1_t 63 CNRM_CM 3 CSIRO_MK 3_5 GFDL_CM 2_0 INMCM 3_0 MIUB_ECHO_G CCCMA_CGCM 3_1 FGOALSrun 1 GFDL_CM 2_1 INVG_ECHAM 4 IPSL_CM 4 GISS_AOMrun 1 Low frequency change of temperatu re (EOF 1) in CMIP 3