Einsteins Theory of Relativity 0 Introduction Ulrich R

  • Slides: 31
Download presentation
Einstein‘s Theory of Relativity 0. Introduction Ulrich R. M. E. Geppert 11/1/2020 U. R.

Einstein‘s Theory of Relativity 0. Introduction Ulrich R. M. E. Geppert 11/1/2020 U. R. M. E. Zielona Gora 1

Relativity in everydays life: GPS – Navigation - 24 satellites, altitude ~ 20000 km,

Relativity in everydays life: GPS – Navigation - 24 satellites, altitude ~ 20000 km, orbital speed 14000 km/h - determines the absolute position on Earth surface within ~ 5 m - ⇒ clock ticks must be known with accuracy of 20… 30 ns Special relativity: satellites in motion relative to Earth surface: - on-board clocks are slower than clocks on Earth ⇒ satellite atomic clocks fall behind 7 μs/day General relativity: satellites high above the Earth: - Curvature of spacetime less than on Earth‘s surface - Earth‘s clocks tick more slowly than satellite‘s clocks ⇒ GPS satellite clock get ahead of ground-based clocks by 45 μs/day 11/1/2020 U. R. M. E. Zielona Gora 2

 SR time diletation: GR time diletation: 11/1/2020 U. R. M. E. Zielona Gora

SR time diletation: GR time diletation: 11/1/2020 U. R. M. E. Zielona Gora 3

Combination of these two relativistic effects: On-board clocks tick faster than identical clocks on

Combination of these two relativistic effects: On-board clocks tick faster than identical clocks on ground by 38 μs/day ≫ 38 ns/day ⇒ not sufficient accuracy How large is the deviation? If relativistic effects are not properly taken into account, errors in global positions would accumulate at a rate of 10 km/day!!! 11/1/2020 U. R. M. E. Zielona Gora 3

Two important terms: Proper time/proper length ⇔ coordinate time/length of the observer, both in

Two important terms: Proper time/proper length ⇔ coordinate time/length of the observer, both in SR and GR Curvature of space-time 11/1/2020 only in GR U. R. M. E. Zielona Gora 4

Michelson – Morley experiment, Potsdam 1881, Cleveland(Ohio) 1887 11/1/2020 U. R. M. E. Zielona

Michelson – Morley experiment, Potsdam 1881, Cleveland(Ohio) 1887 11/1/2020 U. R. M. E. Zielona Gora 5

Assumption: Gallilei-transformation is correct! x X‘ 11/1/2020 U. R. M. E. Zielona Gora 6

Assumption: Gallilei-transformation is correct! x X‘ 11/1/2020 U. R. M. E. Zielona Gora 6

 This shift has not been seen!!! 11/1/2020 U. R. M. E. Zielona Gora

This shift has not been seen!!! 11/1/2020 U. R. M. E. Zielona Gora 7

Are the laws of physics invariant under Galilei transformation? Newton‘s equation of motion: Equ.

Are the laws of physics invariant under Galilei transformation? Newton‘s equation of motion: Equ. of motion is valid also in the IS‘ which moves with constant v relative to IS ⇒ invariant (covariant). Maxwell‘s wave equation: 1 11/1/2020 0 U. R. M. E. Zielona Gora 8

 1 Maxwell equations not invariant under Galilei transformation! not forminvariant 11/1/2020 U. R.

1 Maxwell equations not invariant under Galilei transformation! not forminvariant 11/1/2020 U. R. M. E. Zielona Gora 9

Somthing must be wrong with the Galilei-transformation. - light is not like sound, with

Somthing must be wrong with the Galilei-transformation. - light is not like sound, with a definite speed relative to some underlying medium - light is also not like bullets, with a definite speed relative to the source of the light. Electromagnetic waves propagate in vacuum in each inertial system isotropical with the velocity of light. 11/1/2020 U. R. M. E. Zielona Gora 10

Which transformation returns the correct result? obviously wrong! Lorentz transformation 11/1/2020 U. R. M.

Which transformation returns the correct result? obviously wrong! Lorentz transformation 11/1/2020 U. R. M. E. Zielona Gora 11

Lorentz transformation Galilei: space (x, y, z) and time (t) absolut, independent on each

Lorentz transformation Galilei: space (x, y, z) and time (t) absolut, independent on each other Einstein: the laws of physics have the same form in each inertial system Synonymous: The laws of physics are invariant under Lorentz transformations. space and time spacetime x, y, z; t x, y, z, ct 11/1/2020 U. R. M. E. Zielona Gora 12

Einstein‘s principle of relativity: the laws of physics (Newtons eqs. of motion, Maxwell-eqs. ,

Einstein‘s principle of relativity: the laws of physics (Newtons eqs. of motion, Maxwell-eqs. , …. ) are valid in all IS, i. e. they are forminvariant (covariant) under the transformation between IS and IS‘ (that moves with velocity v 0=v(t, t measured in IS) with respect to IS). The transformation that lets the laws forminvariant is the Lorentz transformation. 11/1/2020 U. R. M. E. Zielona Gora 13

 expansion of a light wave in an IS: realization of spacetime coordinate How

expansion of a light wave in an IS: realization of spacetime coordinate How can in each space point the time be realized? Equation of a 4 -D Lightflash propagates like an expanding spherical surface of a sphere. Invariant under LT 11/1/2020 U. R. M. E. Zielona Gora 14

3 -D simplification: lightcone can be just reached with c r= ct < 0:

3 -D simplification: lightcone can be just reached with c r= ct < 0: space-like interval = 0: lightcone > 0: time-like interval points outside the lightcone are not reachable 11/1/2020 U. R. M. E. Zielona Gora 15

On the lightcone are located all spacetime points, from which „ 0“ can be

On the lightcone are located all spacetime points, from which „ 0“ can be reached with c. - between all points inside the lightcone exist causality, propagation of action is possible, timelike intervals are real - between all points outside the lightcone exist no causality, propagation of action is impossible, spacelike intervals are imaginary 11/1/2020 U. R. M. E. Zielona Gora 16

If all IS are equivalent: The intervall of spacetime has to be invariant under

If all IS are equivalent: The intervall of spacetime has to be invariant under transformation from IS ⇒IS‘: - homogeneity of space: transformation has to be linear - IS‘ moves with v wrt IS along the x-axis, y‘=y, z‘=z 11/1/2020 U. R. M. E. Zielona Gora 17

 11/1/2020 U. R. M. E. Zielona Gora 18

11/1/2020 U. R. M. E. Zielona Gora 18

 11/1/2020 U. R. M. E. Zielona Gora 19

11/1/2020 U. R. M. E. Zielona Gora 19

 11/1/2020 U. R. M. E. Zielona Gora 20

11/1/2020 U. R. M. E. Zielona Gora 20

 defined only for v<c Correlation between space and time 11/1/2020 U. R. M.

defined only for v<c Correlation between space and time 11/1/2020 U. R. M. E. Zielona Gora 21

 from 11/1/2020 U. R. M. E. Zielona Gora 22

from 11/1/2020 U. R. M. E. Zielona Gora 22

Proper time (even easier): Time in the clock in motion runs slower. 11/1/2020 U.

Proper time (even easier): Time in the clock in motion runs slower. 11/1/2020 U. R. M. E. Zielona Gora 23

 11/1/2020 U. R. M. E. Zielona Gora 24

11/1/2020 U. R. M. E. Zielona Gora 24

 Length measured by an observer at rest in IS is smaller then the

Length measured by an observer at rest in IS is smaller then the length measured by an observer co-moving with IS‘. 11/1/2020 U. R. M. E. Zielona Gora 25

Behaviour of the 4 -D volume element under LT: The 4 -D volume element

Behaviour of the 4 -D volume element under LT: The 4 -D volume element is lorentzinvariant! 11/1/2020 U. R. M. E. Zielona Gora 26

 11/1/2020 U. R. M. E. Zielona Gora 27

11/1/2020 U. R. M. E. Zielona Gora 27

Observation of SR effects: even if they move with ~ c, they can travel

Observation of SR effects: even if they move with ~ c, they can travel almost ~ 600 m 11/1/2020 U. R. M. E. Zielona Gora

Are the Maxwell eqs. lorentzinvariant? 11/1/2020 U. R. M. E. Zielona Gora 28

Are the Maxwell eqs. lorentzinvariant? 11/1/2020 U. R. M. E. Zielona Gora 28

second derivatives: Maxwell eqs. Forminvariant under LT. 1 11/1/2020 U. R. M. E. Zielona

second derivatives: Maxwell eqs. Forminvariant under LT. 1 11/1/2020 U. R. M. E. Zielona Gora 29