Effective Dimension Reduction with Prior Knowledge Haesun Park

  • Slides: 18
Download presentation
Effective Dimension Reduction with Prior Knowledge Haesun Park Division of Computational Science and Eng.

Effective Dimension Reduction with Prior Knowledge Haesun Park Division of Computational Science and Eng. College of Computing Georgia Institute of Technology Atlanta, GA Joint work w/ Barry Drake, Peg Howland, Hyunsoo Kim, and Cheonghee Park DIMACS, May, 2007

Dimension Reduction • Dimension Reduction for Clustered Data: Linear Discriminant Analysis (LDA) Generalized LDA

Dimension Reduction • Dimension Reduction for Clustered Data: Linear Discriminant Analysis (LDA) Generalized LDA (LDA/GSVD, regularized LDA) Orthogonal Centroid Method (OCM) • Dimension Reduction for Nonnegative Data: Nonnegative Matrix Factorization (NMF) • Applications: Text classification, Face recognition, Fingerprint classification, Gene clustering in Microarray Analysis …

2 D Representation Utilize Cluster Structure if Known 2 D representation of 150 x

2 D Representation Utilize Cluster Structure if Known 2 D representation of 150 x 1000 data with 7 clusters: LDA vs. SVD

Dimension Reduction for Clustered Data Measure for Cluster Quality A = [a 1. .

Dimension Reduction for Clustered Data Measure for Cluster Quality A = [a 1. . . an] : mxn, clustered data Ni = items in class i, | Ni | = ni , total r classes ci = centroid, c = global centroid Sw = ∑ 1≤ i≤ r ∑ j∈Ni (aj – ci )T Sb = ∑ 1≤ i≤ r ∑ j ∈Ni (ci – c)T St = ∑ 1≤ i≤ n (ai – c )T , Sw + Sb = St

Optimal Dimension Reducing Transformation T: qxm G GTy : qx 1, q << m

Optimal Dimension Reducing Transformation T: qxm G GTy : qx 1, q << m y : mx 1 High quality clusters have small trace(Sw) & large trace(Sb) Want: G s. t. min trace(GT Sw. G) & max trace(GT Sb G) • max trace ((GT Sw. G)-1 (GT Sb G)) LDA (Fisher 36, Rao 48) • max trace (GT Sb G) Orthogonal Centroid (Park et al. 03) GTG=I • max. T trace (GT (Sw+Sb )G) PCA (Pearson 1901, Hotelling 33) G G=I • max trace (GT A AT G) LSI (Deerwester et al. 90) GTG=I

Classical LDA (Fisher ’ 36, Rao ‘ 48) max trace ((GT Sw. G)-1 (GT

Classical LDA (Fisher ’ 36, Rao ‘ 48) max trace ((GT Sw. G)-1 (GT Sb G)) • G : leading (r-1) e. vectors of Sw-1 Sb Fails when m>n (undersampled), Sw singular Sw = Hw x H w. T • Sw=Hw Hw. T, Hw=[a 1 -c 1, a 2 -c 1, …, an-cr ] : mxn • Sb=Hb Hb. T, H b= [ n 1(c 1 -c) , … , nr (cr - c) ] : mxr

LDA based on GSVD (LDA/GSVD) (Howland, Jeon, Park, SIMAX 03, Howland Park, IEEE TPAMI

LDA based on GSVD (LDA/GSVD) (Howland, Jeon, Park, SIMAX 03, Howland Park, IEEE TPAMI 04) Sw-1 Sb x = l x Sbx=l. Swx δ 2 Hb Hb. Tx = b 2 Hw Hw. Tx U T H b. T X = (Sb 0) = 0 V T H w. T X = (Sw 0) = 0 0 I Dw Db X TS b. X = X TS 0 0 w. X = I XT Hb. TX = XT Sb X and XTHw. TX = XT Sw X Classical LDA is a special case of LDA/GSVD 0

Generalization of LDA for Undersampled Problems § Regularized LDA (Friedman ’ 89, Zhao et

Generalization of LDA for Undersampled Problems § Regularized LDA (Friedman ’ 89, Zhao et al. ’ 99 … ) § LDA/GSVD : Solution G = [ X 1 X 2 ] (Howland, Jeon, Park ’ 03) § Solutions based on Null(Sw ) and Range(Sb )… (Chen et al. ’ 00, Yu & Yang ’ 01, Park & Park ’ 03 …) § Two-stage methods: • Face Recognition: PCA + LDA (Swets & Weng ’ 96 , Zhao et al. 99 ) • Information Retrieval: LSI + LDA (Torkkola ’ 01) • Mathematical Equivalence: (Howland Park ’ 03) PCA+ LDA/GSVD = LDA/GSVD LSI +LDA/GSVD = LDA/GSVD More efficient = QRD + LDA/GSVD

QRD Preprocessing in Dim. Reduction (Distance Preserving Dim. Redution) For undersampled data A: mxn,

QRD Preprocessing in Dim. Reduction (Distance Preserving Dim. Redution) For undersampled data A: mxn, m>>n R A = Q 1 R = Q 1 Q 2 0 Q 1: orthonormal basis for span(A) Dimension reduction of A by Q 1 T, Q 1 T A = R: nxn Q 1 T preserves distance of L 2 norm: || ai ||2 = || Q 1 T ai ||2 || ai - aj ||2 = || Q 1 T (ai - aj )||2 In cos distance: cos(ai, aj) = cos(Q 1 T ai, Q 1 T aj) Applicable to PCA, LDA/GSVD, Isomap, LTSA, LLE, …

Speed Up with QRD Preprocessing (computation time) #r LDA/GSVD reg. LDA (LDA) QR+LDA/GSVD QR+LDA/reg.

Speed Up with QRD Preprocessing (computation time) #r LDA/GSVD reg. LDA (LDA) QR+LDA/GSVD QR+LDA/reg. GSVD Text 5896 x 210 7 48. 8 42. 2 0. 14 0. 03 Yale 77760 x 165 15 -- -- 0. 96 0. 22 AT&T 10304 x 400 40 -- -- 0. 07 0. 02 Feret 3000 x 130 10 10. 9 9. 3 0. 01 Opt. Digit 64 x 5610 10 8. 97 9. 60 0. 02 Isolet 617 x 7797 26 98. 1 99. 33 6. 70 Data Dim.

Text Classification with Dim. Reduction (Kim, Howland, Park, JMLR 03) Classification Medline Data (1250

Text Classification with Dim. Reduction (Kim, Howland, Park, JMLR 03) Classification Medline Data (1250 items, 5 Clusters) Reuters Data (9579 items, 90 Clusters) Full OCM LDA/GSVD Full OCM 22095 5 4 11941 90 centroid (L 2) 84. 8 88. 9 78. 89 78. 00 centroid (Cosine) 88. 0 83. 9 80. 45 80. 46 15 nn (L 2) 83. 4 88. 2 89. 0 15 nn (Cosine) 82. 3 88. 3 83. 9 78. 65 85. 51 30 nn(L 2) 83. 9 88. 6 89. 0 30 nn (Cosine) 83. 5 88. 4 83. 9 80. 21 86. 19 SVM 88. 9 88. 7 87. 2 87. 11 87. 03 Methods Dim Classification accuracy (%) Similarity measures: L 2 norm and Cosine

Face Recognition on Yale Data (C. Park and H. Park, icdm 04) Dim. Red.

Face Recognition on Yale Data (C. Park and H. Park, icdm 04) Dim. Red. Method Dim k=1 Full Space 8586 LDA/GSVD 14 Regularized LDA (l=1) 14 Proj. to null (Sw) 14 (Chen et al. , ’ 00) Transf. to range(Sb) 14 (Yu & Yang, ’ 01) 79. 4 98. 8 (90) 97. 6 (85) 97. 6 (84) k. NN k=5 k=9 76. 4 98. 8 97. 6 72. 1 98. 8 97. 6 89. 7 (82) 94. 6 91. 5 Prediction Accuracy in %, leave-one-out ( and average of 100 random split) Yale Face Database: 243 x 320 pixels = full dimension of 77760 11 images/person x 15 people = 165 images After Preprocessing (avg 3 x 3): 8586 x 165

Fingerprint Classification Results on NIST Fingerprint Database 4 (C. Park and H. Park ,

Fingerprint Classification Results on NIST Fingerprint Database 4 (C. Park and H. Park , Pattern Recognition, 2005) KDA/GSVD: Nonlinear Extension of LDA/GSVD based on Kernel Functions Rejection rate(%) KDA/GSVD 0 1. 8 8. 5 90. 7 91. 3 92. 8 k. NN & NN Jain et al. , 99 - 90. 0 91. 2 SVM - 90. 0 92. 2 Yao et al. , 03 4000 fingerprint images of size 512 x 512 By KDA/GSVD, dimension reduced from 105 x 105 to 4

Nonnegativity Preserving Dim. Reduction Nonnegative Matrix Factorization (Paatero&Tappa 94, Lee&Seung NATURE 99, Pauca et

Nonnegativity Preserving Dim. Reduction Nonnegative Matrix Factorization (Paatero&Tappa 94, Lee&Seung NATURE 99, Pauca et al. SIAM DM 04, Hoyer 04, Lin 05, Berry 06, Kim and Park 06, …) Given A: mxn with A>=0 and k << min (m, n), find W: mxk and H: kxn with W>=0 and H>=0 s. t. A ~ = H W min || A – WH ||F NMF/ANLS: Two-block Coordinate Descent Method in Bound-constrained Opt. Iterate the following ANLS (Kim and Park, Bioinformatics, to appear ) : fixing W , solve min. H>=0 || W H –A||F fixing H , solve min. W>=0 || HT WT –AT||F Any limit point is a stationary point (Grippo and Siandrone 00)

Nonnegativity Constraints? Better Approximation vs. Better Representation/Interpretation Given A : m x n and

Nonnegativity Constraints? Better Approximation vs. Better Representation/Interpretation Given A : m x n and k < min(m, n) § SVD: Best Approximation min ||A – W H||F, A = US VT, A @ Uk Sk Vk. T § NMF: Better Representation/Interpretation? min ||A – W H|| F, W>=0, H>=0 ? Nonnegative Constraints are physically meaningful Pixels in digital image, Molecule concentration in bioinformatics Signal Intensities, Visualization…. Interpretation of analysis results: nonsubtractive combinations of nonnegative basis vectors

Performance of NMF Algorithms The relative residuals vs. the number of iterations for NMF/ANLS,

Performance of NMF Algorithms The relative residuals vs. the number of iterations for NMF/ANLS, NMF/MUR, and NMF/ALS on a zero residual artificial problem A: 200 x 50

Recovery of Factors by SVD and NMF A: 2500 x 28, W: 2500 x

Recovery of Factors by SVD and NMF A: 2500 x 28, W: 2500 x 3, H: 3 x 28 where A=W*H Recovery of the factors W and H by SVD and NMF/ANLS

Summary Effective Algorithms for Dimension Reduction and Matrix Decompositions that exploits prior knowledge •

Summary Effective Algorithms for Dimension Reduction and Matrix Decompositions that exploits prior knowledge • Design of New Algorithms: e. g. for undersampled data • Take Advantage of Prior Knowledge for Physically More Meaningful Modeling • Storage and Efficiency Issues for Massive Scale Data • Adaptive Algorithms * Applicable to a wide range of problems (Text classification, Facial recognition, Fingerprint classification, Gene class discovery in Microarray data, Protein secondary structure prediction … ) Thank you!