Effect of Creep on Refractory Masonry Wall Subjected

Effect of Creep on Refractory Masonry Wall Subjected to Cyclic Temperature Loading Pratik Gajjar, João M. Pereira, Paulo B. Lourenço University of Minho, Portugal UNITECR 2019, Yokohama, Japan

Presentation Outline ► Background ► Approach ► Results ► Discussion ► Summery UNITECR 2019, Yokohama, Japan 2

Background ► Thermomechanical behaviour of refractory linings in Iron and Steel applications. § impact of corrosion on thermomechanical properties § thermal shock resistance § modelling of nonlinear thermomechanical behaviours § instrumentation of industrial devices § measurement in operation conditions. ► 7 Academic and 8 industrial partners UNITECR 2019, Yokohama, Japan 3

Background ► Development of numerical models considering elasto-viscoplasticity, damage, corrosion effects and joints. ► Thermomechanical testing on masonry subsystems ladle. ► Measurements for numerical validation. UNITECR 2019, Yokohama, Japan 4

Background ► Preparing for the experimental campaigns on thermo-mechanical behaviour of refractory masonry panels subjected to temperature loadings. ► Numerical simulations to predict the range of acquisition equipment to be used during the experimental tests. ► Moving from Meso to Macro scale. UNITECR 2019, Yokohama, Japan 5

Background ► Thermomechanical loads due to combined effects of thermal shocks, mechanical and thermal constraints. ► Elastic or inelastic behavior, depending on duration, magnitudes of thermomechanical loads and material properties itself. ► Inelastic behavior can be attributed to plastic behavior and creep effects at higher temperatures. UNITECR 2019, Yokohama, Japan 6

Approach ► 2 D plane stress model with magnesia-chromite bricks and dry joints. ► Dimensions of wall panel 124(B) × 760 (H) mm. ► 4 different numerical simulations 12 4 76 24 UNITECR 2019, Yokohama, Japan 0 7

Approach Property Young's modulus Poisson number Density Thermal expansion Conductivity Specific heat capacity Parameter 6. 3 - 35. 5 Gpa* 0. 2 3250 kg/m 3 1 - 1. 7 10 -5 K-1* 3. 26 - 3. 48 W/m. K* 1 - 1. 2 k. J/kg. K* Material Properties [*temperature dependent]1 1 Prietl, Thomas. 2006. “Ermittlung Materialspezifischer Kennwerte von Feuerfesten Werkstoffen Und Zustellungen Unter Uni- Und Biaxialen Lastbedingungen Für Die Nichteisenmetallindustrie. ” UNITECR 2019, Yokohama, Japan 8

Approach Experimental results 1 1 Prietl, Thomas. 2006. “Ermittlung Materialspezifischer Kennwerte von Feuerfesten Werkstoffen Und Zustellungen Unter Uni- Und Biaxialen Lastbedingungen Für Die Nichteisenmetallindustrie. ” UNITECR 2019, Yokohama, Japan 9

Approach Temperature (ᵒC) K (MPa-ns-1) 1100 1. 18 × 10 -16 1200 2. 77 × 10 -16 Norton-Bailey creep law parameters 2 2 Jin, n a 2. 86 -1. 80 Shengli, Harald Harmuth, and Dietmar Gruber. 2014. “Compressive Creep Testing of Refractories at Elevated Loads—Device, Material Law and Evaluation Techniques. ” Journal of the European Ceramic Society 34 (15): 4037– 42. UNITECR 2019, Yokohama, Japan 10

Approach ► Elastic – Creep ► Plastic - Creep UNITECR 2019, Yokohama, Japan 11

Results 0 Minutes UNITECR 2019, Yokohama, Japan 120 Minutes 240 Minutes 12

Results Plastic Creep UNITECR 2019, Yokohama, Japan Plastic 13

Results Plastic Creep UNITECR 2019, Yokohama, Japan Plastic 14

Results Total Strain UNITECR 2019, Yokohama, Japan Thermal Strain Creep strain Vertical Stress Component 15

Approach ► Elastic – Creep ► Cyclic Temperature Loading ► Uniform compressive load at the top UNITECR 2019, Yokohama, Japan 16

Results 0 Hours UNITECR 2019, Yokohama, Japan 20 Hours 39 Hours 17

Results Elastic creep UNITECR 2019, Yokohama, Japan Elastic 18

Results Total Strain Thermal Strain UNITECR 2019, Yokohama, Japan Creep Strain 19

Results Out-of-plane stress UNITECR 2019, Yokohama, Japan Vertical stress 20

Summery ► Better understanding of creep behaviour on wall panel ► Aid in designing experimental tests ► Dry joint characterization ► Validation and calibration of numerical FE models considering the effect of creep at meso and macro scale UNITECR 2019, Yokohama, Japan 21

Thank you! pratik. gajjar@civil. uminho. pt Acknowledgments: this work was supported by the funding scheme of the European Commission, Marie Skłodowska-Curie Actions Innovative Training Networks in the frame of the project ATHOR - Advanced THermomechanical www. etn-athor. eu multiscale modelling of Refractory linings 764987 Grant. 22
- Slides: 22