Ecloud Simulation Meeting Ecloud simulations for the LHC

  • Slides: 20
Download presentation
E-cloud Simulation Meeting Ecloud simulations for the LHC arcs Humberto Maury Cuna November 28

E-cloud Simulation Meeting Ecloud simulations for the LHC arcs Humberto Maury Cuna November 28 th, 2011

Outline �Quadrupole heat load oscillations � 25 -ns heat load benchmarking �Beam pipe radius

Outline �Quadrupole heat load oscillations � 25 -ns heat load benchmarking �Beam pipe radius scan �Gaussian-Flat comparison. bunch profile

Simulated heat load for a Quadrupole - SEY = 1. 5 - 7 Te.

Simulated heat load for a Quadrupole - SEY = 1. 5 - 7 Te. V 1. 40 E+01 1. 20 E+01 Heat load (W/m) 1. 00 E+01 8. 00 E+00 QUAD/nistep=3000 6. 00 E+00 4. 00 E+00 2. 00 E+00 0. 00 E+00 5. 00 E+10 1. 00 E+11 1. 50 E+11 Nb 2. 00 E+11 2. 50 E+11

Simulated heat load for a Quadrupole - SEY = 1. 5 - 7 Te.

Simulated heat load for a Quadrupole - SEY = 1. 5 - 7 Te. V 1. 40 E+01 1. 20 E+01 Heat load (W/m) 1. 00 E+01 8. 00 E+00 QUAD/nistep=3000 QUAD/nistep=1500 6. 00 E+00 4. 00 E+00 2. 00 E+00 0. 00 E+00 5. 00 E+10 1. 00 E+11 1. 50 E+11 Nb 2. 00 E+11 2. 50 E+11

Simulated heat load for a Quadrupole - SEY = 1. 5 - 7 Te.

Simulated heat load for a Quadrupole - SEY = 1. 5 - 7 Te. V 1. 40 E+01 1. 20 E+01 Heat laod (W/m) 1. 00 E+01 8. 00 E+00 QUAD/nistep=3000 QUAD/ibend 2=1 6. 00 E+00 4. 00 E+00 2. 00 E+00 0. 00 E+00 5. 00 E+10 1. 00 E+11 1. 50 E+11 Nb 2. 00 E+11 2. 50 E+11

Simulated heat load for a Quadrupole - SEY = 1. 5 - 7 Te.

Simulated heat load for a Quadrupole - SEY = 1. 5 - 7 Te. V 1. 40 E+01 1. 20 E+01 Heat load (W/m) 1. 00 E+01 8. 00 E+00 QUAD/nistep=3000 QUAD/ibend 2=3 6. 00 E+00 4. 00 E+00 2. 00 E+00 0. 00 E+00 5. 00 E+10 1. 00 E+11 1. 50 E+11 Nb 2. 00 E+11 2. 50 E+11

Simulated heat load for a Quadrupole - SEY = 1. 5 - 7 Te.

Simulated heat load for a Quadrupole - SEY = 1. 5 - 7 Te. V 1. 40 E+01 1. 20 E+01 Heat load (W/m) 1. 00 E+01 8. 00 E+00 QUAD/nistep=3000 QUAD/npepb=5000 6. 00 E+00 4. 00 E+00 2. 00 E+00 0. 00 E+00 5. 00 E+10 1. 00 E+11 1. 50 E+11 Nb 2. 00 E+11 2. 50 E+11

Heat load quadrupole - SEY = 1. 7 - R = 0. 5 -

Heat load quadrupole - SEY = 1. 7 - R = 0. 5 - 7 Te. V 1. 40 E+01 1. 20 E+01 Heat load (W/m) 1. 00 E+01 8. 00 E+00 QUAD/nistep=3000 QUAD/nistep=1500 QUAD/ibend 2=1 6. 00 E+00 QUAD/ibend 2=3 QUAD/npepb=5000 4. 00 E+00 2. 00 E+00 0. 00 E+00 5. 00 E+10 1. 00 E+11 1. 50 E+11 Nb 2. 00 E+11 2. 50 E+11

Simulation parameters for 25 ns Bunch spacing 25 ns Bunch intensity 1. 2 x

Simulation parameters for 25 ns Bunch spacing 25 ns Bunch intensity 1. 2 x 1011 p/b SEY Reflectivity 1. 5 2. 0 0. 1 – 1. 0 We used a pressure of 32 n. Torr 72 bunches nistep = 2500 925 ns X 3 Cross section 2 Mbarn Energy 450 Ge. V

Simulation parameters for 50 ns – Drift Bunch spacing 50 ns Bunch intensity 1.

Simulation parameters for 50 ns – Drift Bunch spacing 50 ns Bunch intensity 1. 15 x 1011 p/b Bunch length 9 cm sx, sy 0. 3 mm SEY Reflectivity 1. 0 2. 3 0. 3 Fill pattern Energy Magnetic Radius field (mm) 4. 195 T 15 – 300 1 3. 5 Te. V* Energy 3. 5 Te. V * We used a primary photoelectron emission yield =0. 0001233 36 bunches (1) nistep = 2500 200 ns 36 bunches

Heat load: Profile Dependence (dipole section) Average 4 E 11 ppb BLM BSM

Heat load: Profile Dependence (dipole section) Average 4 E 11 ppb BLM BSM

Gaussi an Flat

Gaussi an Flat

Conclusions Quadrupole oscillations still appear for different simulations parameters and solving routines. Gaussian-bunch-profile heat

Conclusions Quadrupole oscillations still appear for different simulations parameters and solving routines. Gaussian-bunch-profile heat load is higher than Flat-bunch-profile heat load. For R = 0. 2, the 25 -ns heat load benchmarking gives a SEY ~ 1. 8. The uncertainty in the absolute heat load value is of the order of 10 -20%

Thank you for your attention

Thank you for your attention