ECE 546 Lecture 03 Resistance Capacitance Inductance Spring

  • Slides: 59
Download presentation
ECE 546 Lecture 03 Resistance, Capacitance, Inductance Spring 2014 Jose E. Schutt-Aine Electrical &

ECE 546 Lecture 03 Resistance, Capacitance, Inductance Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab. uiuc. edu ECE 546 – Jose Schutt-Aine 1

What is Extraction? Process in which a complex arrangement of conductors and dielectric is

What is Extraction? Process in which a complex arrangement of conductors and dielectric is converted into a netlist of elements in a form that is amenable to circuit simulation. Need Field Solvers ECE 546 – Jose Schutt-Aine 2

Electromagnetic Modeling Tools We need electromagnetic modeling tools to analyze: Transmission line propagation Reflections

Electromagnetic Modeling Tools We need electromagnetic modeling tools to analyze: Transmission line propagation Reflections from discontinuities Crosstalk between interconnects Simultaneous switching noise So we can provide: Improved design of interconnects Robust design guidelines Faster, more cost effective design cycles ECE 546 – Jose Schutt-Aine 3

Field Solvers – History 1960 s Conformal mapping techniques Finite difference methods (2 -D

Field Solvers – History 1960 s Conformal mapping techniques Finite difference methods (2 -D Laplace eq. ) Variational methods 1970 s Boundary element method Finite element method (2 -D) Partial element equivalent circuit (3 -D) 1980 s Time domain methods (3 -D) Finite element method (3 -D) Moment method (3 -D) r. PEEC method (3 -D) 1990 s Adapting methods to parallel computers Including methods in CAD tools ECE 546 – Jose Schutt-Aine 4

Categories of Field Solvers • Method of Moments (MOM) • Application to 2 -D

Categories of Field Solvers • Method of Moments (MOM) • Application to 2 -D Interconnects • Closed-Form Green’s Function • Full-Wave and FDTD • Parallel FDTD • Applications ECE 546 – Jose Schutt-Aine 5

Capacitance Relation: Q = Cv Q: charge stored by capacitor C: capacitance v: voltage

Capacitance Relation: Q = Cv Q: charge stored by capacitor C: capacitance v: voltage across capacitor i: current into capacitor ECE 546 – Jose Schutt-Aine 6

Capacitance A : area eo : permittivity For more complex capacitance geometries, need to

Capacitance A : area eo : permittivity For more complex capacitance geometries, need to use numerical methods ECE 546 – Jose Schutt-Aine 7

Capacitance Calculation Once the charge distribution is known, the total charge Q can be

Capacitance Calculation Once the charge distribution is known, the total charge Q can be determined. If the potential f=V, we have Q=CV To determine the charge distribution, use the moment method ECE 546 – Jose Schutt-Aine 8

METHOD OF MOMENTS Operator equation L(f) = g L = integral or differential operator

METHOD OF MOMENTS Operator equation L(f) = g L = integral or differential operator f = unknown function g = known function Expand unknown function f ECE 546 – Jose Schutt-Aine 9

METHOD OF MOMENTS in terms of basis functions fn, with unknown coefficients a to

METHOD OF MOMENTS in terms of basis functions fn, with unknown coefficients a to get n Finally, take the scalar or inner product with testing of weighting functions wm: Matrix equation ECE 546 – Jose Schutt-Aine 10

METHOD OF MOMENTS Solution for weight coefficients ECE 546 – Jose Schutt-Aine 11

METHOD OF MOMENTS Solution for weight coefficients ECE 546 – Jose Schutt-Aine 11

Moment Method Solution Green’s function G: LG = d ECE 546 – Jose Schutt-Aine

Moment Method Solution Green’s function G: LG = d ECE 546 – Jose Schutt-Aine 12

Basis Functions Subdomain bases Testing functions often (not always) chosen same as basis function.

Basis Functions Subdomain bases Testing functions often (not always) chosen same as basis function. ECE 546 – Jose Schutt-Aine 13

Conducting Plate s = charge density on plate ECE 546 – Jose Schutt-Aine 14

Conducting Plate s = charge density on plate ECE 546 – Jose Schutt-Aine 14

Conducting Plate Setting f = V on plate for |x| < a; |y| <

Conducting Plate Setting f = V on plate for |x| < a; |y| < a Capacitance of plate: ECE 546 – Jose Schutt-Aine 15

Conducting Plate Basis function Pn Representation of unknown charge ECE 546 – Jose Schutt-Aine

Conducting Plate Basis function Pn Representation of unknown charge ECE 546 – Jose Schutt-Aine 16

Conducting Plate Matrix equation: Matrix element: ECE 546 – Jose Schutt-Aine 17

Conducting Plate Matrix equation: Matrix element: ECE 546 – Jose Schutt-Aine 17

Parallel Plates Using N unknowns per plate, we get 2 N matrix equation: Subscript

Parallel Plates Using N unknowns per plate, we get 2 N matrix equation: Subscript ‘t’ for top and ‘b’ for bottom plate, respectively. ECE 546 – Jose Schutt-Aine 18

Parallel Plates Matrix equation becomes Solution: Capacitance Using Ds=4 b 2 and all elements

Parallel Plates Matrix equation becomes Solution: Capacitance Using Ds=4 b 2 and all elements of ECE 546 – Jose Schutt-Aine 19

Inductance Relation: Y = Li Y: flux stored by inductor L: inductance i: current

Inductance Relation: Y = Li Y: flux stored by inductor L: inductance i: current through inductor v: voltage across inductor ECE 546 – Jose Schutt-Aine 20

Inductance Magnetic Flux Total flux linked Inductance = Current ECE 546 – Jose Schutt-Aine

Inductance Magnetic Flux Total flux linked Inductance = Current ECE 546 – Jose Schutt-Aine 21

2 -D Isomorphism Electrostatics Magnetostatics Consequence: 2 D inductance can be calculated from 2

2 -D Isomorphism Electrostatics Magnetostatics Consequence: 2 D inductance can be calculated from 2 D capacitance formulas ECE 546 – Jose Schutt-Aine 22

2 -D N-line LC Extractor using MOM • Symmetric signal traces • Uniform spacing

2 -D N-line LC Extractor using MOM • Symmetric signal traces • Uniform spacing • Lossless lines • Uses MOM for solution ECE 546 – Jose Schutt-Aine 23

Output from Mo. M Extractor Capacitance (p. F/m) 118. 02299 -8. 86533 119. 04875

Output from Mo. M Extractor Capacitance (p. F/m) 118. 02299 -8. 86533 119. 04875 -0. 03030 -8. 86185 -0. 00011 -0. 03029 -0. 00000 -0. 00011 -0. 03030 -0. 00011 -0. 00000 -8. 86185 -0. 03029 -0. 00011 119. 04876 -8. 86185 -0. 03030 -8. 86185 119. 04875 -8. 86533 -0. 03030 -8. 86533 118. 02299 Inductance (n. H/m) 312. 71680 23. 42397 1. 83394 0. 14361 0. 01128 23. 42397 311. 76042 23. 34917 1. 82812 0. 14361 1. 83394 23. 34917 311. 75461 23. 34917 1. 83394 0. 14361 1. 82812 23. 34917 311. 76042 23. 42397 0. 01128 0. 14361 1. 83394 23. 42397 312. 71680 ECE 546 – Jose Schutt-Aine 24

RLGC: Formulation Method • Reference – K. S. Oh, D. B. Kuznetsov and J.

RLGC: Formulation Method • Reference – K. S. Oh, D. B. Kuznetsov and J. E. Schutt-Aine, "Capacitance Computations in a Multilayered Dielectric Medium Using Closed-Form Spatial Green's Functions, " IEEE Trans. Microwave Theory Tech. , vol. MTT 42, pp. 1443 -1453, August 1994. ECE 546 – Jose Schutt-Aine 25

Multilayer Green's Function Optional Top Ground Plane y=d. Nd e. Nd, mo Nd y=d.

Multilayer Green's Function Optional Top Ground Plane y=d. Nd e. Nd, mo Nd y=d. Nd-1 y=d 2 e 2, mo e 1, mo 2 1 y=d 1 y x y=0 Bottom Ground Plane ECE 546 – Jose Schutt-Aine 26

Extraction Program: RLGC computes the four transmission line parameters, viz. , the capacitance matrix

Extraction Program: RLGC computes the four transmission line parameters, viz. , the capacitance matrix C, the inductance matrix L, the conductance matrix G, and the resistance matrix R, of a multiconductor transmission line in a multilayered dielectric medium. RLGC features the following list of functions: ECE 546 – Jose Schutt-Aine 27

RLGC – Multilayer Extractor • Features – Handling of dielectric layers with no ground

RLGC – Multilayer Extractor • Features – Handling of dielectric layers with no ground plane, either top or bottom ground plane (microstrip cases), or both top and bottom ground planes (stripline cases) – Static solutions are obtained using the Method of Moment (Mo. M) in conjunction with the recently-developed closed-form Green’s functions: one of the most accurate and efficient methods for static analysis – Modeling of dielectric losses as well as conductor losses (including ground plane losses – The resistance matrix R is computed based on the current distribution - more accurate than the use of any closed-formulae – Both the proximity effect and the skin effect are modeled in the resistance matrix R. – Computes the potential distribution – Handling of an arbitrary number of dielectric layers as well as an arbitrary number of conductors. – The cross section of a conductor can be arbitrary or even be infinitely thin • Reference – K. S. Oh, D. B. Kuznetsov and J. E. Schutt-Aine, "Capacitance Computations in a Multilayered Dielectric Medium Using Closed-Form Spatial Green's Functions, " IEEE Trans. Microwave Theory Tech. , vol. MTT-42, pp. 1443 -1453, August 1994. ECE 546 – Jose Schutt-Aine 28

RLGC – General Topology Three conductors in a layered medium. All conductor dimensions and

RLGC – General Topology Three conductors in a layered medium. All conductor dimensions and spacing are identical. The loss tangents of the lower and upper dielectric layers are 0. 004 and 0. 001 respectively, the conductivity of each line is 5. 8 e 7 S/m, and the operating frequency is 1 GHz ECE 546 – Jose Schutt-Aine 29

3 -Line Capacitance Results Capacitance Matrix (p. F/m) Delabare et al. RLGC Method ECE

3 -Line Capacitance Results Capacitance Matrix (p. F/m) Delabare et al. RLGC Method ECE 546 – Jose Schutt-Aine 30

Modeling Vias ECE 546 – Jose Schutt-Aine 31

Modeling Vias ECE 546 – Jose Schutt-Aine 31

Modeling Discontinuities ECE 546 – Jose Schutt-Aine 32

Modeling Discontinuities ECE 546 – Jose Schutt-Aine 32

3 D Inductance Calculation Loop Inductance QUESTION: Can we associate inductance with piece of

3 D Inductance Calculation Loop Inductance QUESTION: Can we associate inductance with piece of conductor rather than a loop? PEEC Method ECE 546 – Jose Schutt-Aine 33

Partial Inductance (PEEC) Approach QUESTION: Can we associate inductance with piece of conductor rather

Partial Inductance (PEEC) Approach QUESTION: Can we associate inductance with piece of conductor rather than a loop? DEFINITION OF PARTIAL INDUCTANCE ECE 546 – Jose Schutt-Aine 34

Circuit Element K [K]=[L]-1 • Better locality property • Leads to sparser matrix •

Circuit Element K [K]=[L]-1 • Better locality property • Leads to sparser matrix • Diagonally dominant • Allows truncation of far off-diagonal elements • Better suited for on-chip inductance analysis ECE 546 – Jose Schutt-Aine 35

Locality of K Matrix ECE 546 – Jose Schutt-Aine 36

Locality of K Matrix ECE 546 – Jose Schutt-Aine 36

Package Inductance & Capacitance Component Capacitance Inductance (p. F) (n. H) 68 pin plastic

Package Inductance & Capacitance Component Capacitance Inductance (p. F) (n. H) 68 pin plastic DIP pin† 4 35 68 pin ceramic DIP pin†† 7 20 68 pin SMT chip carrier † 2 7 † No ground plane; capacitance is dominated by wire-to-wire component. †† With ground plane; capacitance and inductance are determined by the distance between the lead frame and the ground plane, and the lead length. ECE 546 – Jose Schutt-Aine 37

Package Inductance & Capacitance Component Capacitance Inductance (p. F) (n. H) 68 pin PGA

Package Inductance & Capacitance Component Capacitance Inductance (p. F) (n. H) 68 pin PGA pin†† 2 7 256 pin PGA pin†† 5 15 Wire bond 1 Solder bump 0. 5 0. 1 † No ground plane; capacitance is dominated by wire-towire component. †† With ground plane; capacitance and inductance are determined by the distance between the lead frame and the ground plane, and the lead length. ECE 546 – Jose Schutt-Aine 38

ECE 546 – Jose Schutt-Aine 39

ECE 546 – Jose Schutt-Aine 39

Metallic Conductors Metal Conductivity s (W m 10 ) Silver 6. 1 Copper 5.

Metallic Conductors Metal Conductivity s (W m 10 ) Silver 6. 1 Copper 5. 8 Gold 3. 5 Aluminum 1. 8 Tungsten 1. 8 Brass 1. 5 Solder 0. 7 Lead 0. 5 Mercury 0. 1 -1 ECE 546 – Jose Schutt-Aine -1 -7 40

Dielectrics Ø Dielectrics contain charges that are tightly bound to the nuclei Ø Charges

Dielectrics Ø Dielectrics contain charges that are tightly bound to the nuclei Ø Charges can move a fraction of an atomic distance away from equilibrium position Ø Electron orbits can be distorted when an electric field is applied ECE 546 – Jose Schutt-Aine 41

Dielectrics Ø Charge density within volume is zero Ø Surface charge density is nonzero

Dielectrics Ø Charge density within volume is zero Ø Surface charge density is nonzero D=eo(1+ e)E=e. E ECE 546 – Jose Schutt-Aine 42

Dielectric Materials Material Germanium Silicon Glass Quartz Conductivity (W-1 -m-1) 2. 2 0. 0016

Dielectric Materials Material Germanium Silicon Glass Quartz Conductivity (W-1 -m-1) 2. 2 0. 0016 10 -10 -10 -14 0. 5 10 -17 ECE 546 – Jose Schutt-Aine 43

Dielectric Materials Material er v(cm/s) Polyimide Silicon dioxide Epoxy glass (FR 4) Alumina (ceramic)

Dielectric Materials Material er v(cm/s) Polyimide Silicon dioxide Epoxy glass (FR 4) Alumina (ceramic) 2. 5 -3. 5 3. 9 5. 0 9. 5 16 -19 15 13 10 ECE 546 – Jose Schutt-Aine 44

Conductivity of Dielectric Materials e = e r + j ei Material Conductivity (W

Conductivity of Dielectric Materials e = e r + j ei Material Conductivity (W -1 m-1) Germanium 2. 2 Silicon 0. 0016 Glass 10 -10 - 10 -14 Quartz 0. 5 x 10 -17 Loss TANGENT : tand = wse ECE 546 – Jose Schutt-Aine 45

Combining Field and Circuit Solutions Field Solution Network Description à Bypass extraction procedure through

Combining Field and Circuit Solutions Field Solution Network Description à Bypass extraction procedure through the use of Y, Z, or S parameters (frequency domain) ECE 546 – Jose Schutt-Aine Macromodel Generation Circuit Simulation 46

Full-Wave Methods Faraday’s Law of Induction Ampère’s Law Gauss’ Law for electric field Gauss’

Full-Wave Methods Faraday’s Law of Induction Ampère’s Law Gauss’ Law for electric field Gauss’ Law for magnetic field FDTD: Discretize equations and solve with appropriate boundary conditions ECE 546 – Jose Schutt-Aine 47

Finite Difference Time Domain (FDTD) z E y H z y x E x

Finite Difference Time Domain (FDTD) z E y H z y x E x Ez Ez E y H x H y E y H x Ez E x H z E y Space Discretization ECE 546 – Jose Schutt-Aine 48

FDTD – Yee Algorithm z Ey y Hz x Ex Ex Ez Ez Ey

FDTD – Yee Algorithm z Ey y Hz x Ex Ex Ez Ez Ey Hx Hy Hy Ey Hx Ex Ez Hz Ex Ey ECE 546 – Jose Schutt-Aine 49

2 D-FDTD Ey Ex Hz y x ECE 546 – Jose Schutt-Aine 50

2 D-FDTD Ey Ex Hz y x ECE 546 – Jose Schutt-Aine 50

Absorbing Boundary Condition: 2 D-PML Formulation Simulation Medium PML Medium y x No reflection

Absorbing Boundary Condition: 2 D-PML Formulation Simulation Medium PML Medium y x No reflection from PML interface ECE 546 – Jose Schutt-Aine 51

FDTD – Coupled Microstrips s/ h=0. 8. 0. 1 0 7 s/ h=1. 0

FDTD – Coupled Microstrips s/ h=0. 8. 0. 1 0 7 s/ h=1. 0 -0. 0 1 s/ h=1. 2 -0. 0 1 1 0 6 C 12 (n. F/m) -0. 0 1 2 C 11 (n. F/m) 0. 1 0 5 0. 1 0 4 0. 1 0 3 -0. 0 1 4 s/ h=0. 8 -0. 0 1 5 s/ h=1. 2 -0. 0 1 6 w 0. 1 0 2 0 5 10 15 Frequency (GHz) 20 s w -0. 0 1 7 0 25 5 10 15 Frequency (GHz) 20 25 h Parameters: w=0. 3 mm, h=0. 25 mm. Dielectric constant is 4. 5. s/ h=0. 8 360 95 s/ h=1. 2 350 s/ h=1. 2 100 s/ h=1. 0 L 12 (n. H/m) L 11 (n. H/m) 355 s/ h=1. 0 105 s/ h=0. 8 345 340 90 85 80 75 70 335 0 5 10 15 Frequency (GHz) 20 25 65 0 ECE 546 – Jose Schutt-Aine 5 10 15 Fr equency ( GHz) 20 25 52

Parallel-FDTD - Motivations PCB interconnect EM problems 1. Interconnect coupling / crosstalk 2. Signal

Parallel-FDTD - Motivations PCB interconnect EM problems 1. Interconnect coupling / crosstalk 2. Signal distortion 3. Radiation (EMI) 4. etc PCB modeling challenges: 1. Size of the problem - determined by the ratio of board size and finest features 2. Simulations time Solutions: Supercomputer Mini-computer cluster ECE 546 – Jose Schutt-Aine Gflops/dollar 53

Parallel-FDTD Scalability Speed vs. problem size ECE 546 – Jose Schutt-Aine 54

Parallel-FDTD Scalability Speed vs. problem size ECE 546 – Jose Schutt-Aine 54

Parallel-FDTD Physical layout Parser/translator Mesh generator GDSII, Mentor Graphic Parallel Mesh Generator EM modeling

Parallel-FDTD Physical layout Parser/translator Mesh generator GDSII, Mentor Graphic Parallel Mesh Generator EM modeling Circuit simulation ECE 546 – Jose Schutt-Aine 55

Parallel-FDTD Max( computation/communication) Maximize the ratio of volume to surface Partition along the largest

Parallel-FDTD Max( computation/communication) Maximize the ratio of volume to surface Partition along the largest dimension Node 1 ECE 546 – Jose Schutt-Aine Node 2 Node 3 Node 4 56

Parallel-FDTD A cellular phone PCB test board • six layered test board • over

Parallel-FDTD A cellular phone PCB test board • six layered test board • over 4000 vias • dielectric materials FR 4 • total thickness < 20 mils • over 60 traces • around 30 PEC fills • around 300 component pads ECE 546 – Jose Schutt-Aine 57

Parallel-FDTD Comparison between measurement and simulation S 21 S 11 ECE 546 – Jose

Parallel-FDTD Comparison between measurement and simulation S 21 S 11 ECE 546 – Jose Schutt-Aine 58

Parallel-FDTD S 31 • S 41 Reference – F. Liu, J. Schutt-Ainé and J.

Parallel-FDTD S 31 • S 41 Reference – F. Liu, J. Schutt-Ainé and J. Chen, "Full Wave Analysis and Modeling of Multiconductor Transmission Lines via 2 -D-FDTD and Signal-Processing Techniques, " IEEE Trans. Microwave Theory Tech. vol. 50, pp. 570 -577, February 2002. ECE 546 – Jose Schutt-Aine 59