Dual cryogenic ion trap spectrometer for spectroscopy of

  • Slides: 14
Download presentation
Dual cryogenic ion trap spectrometer for spectroscopy of cold ion-molecule complexes Many thanks to

Dual cryogenic ion trap spectrometer for spectroscopy of cold ion-molecule complexes Many thanks to Anne Mc. Coy, Mark Johnson and Tim Zwier! ETIENNE GARAND UNIVERSITY OF WISCONSIN-MADISON 2/11/2022 UW-MADISON 1

Cryogenic trap for spectroscopy of mass-selected ions tagged ion er Mass separation Frag ion

Cryogenic trap for spectroscopy of mass-selected ions tagged ion er Mass separation Frag ion IR ion tagged ion las ion Mass selection Collisional cooling parent ion Helium buffer gas cooling (10 K) D 2 tag condensation 2/11/2022 UW-MADISON Laser induced vibrational excitation D 2 tag evaporation 2

Cryogenic ion infrared spectroscopy M+ M+·(D 2)2 (Gly)4 H+ M+·(D 2)3 240 245 250

Cryogenic ion infrared spectroscopy M+ M+·(D 2)2 (Gly)4 H+ M+·(D 2)3 240 245 250 255 260 265 270 Mass gate ON 240 245 250 255 260 265 270 Laser on resonance (3570 cm-1) 2600 245 2/11/2022 250 255 260 265 2800 3000 3200 3400 3600 wavenumber (cm-1) 270 UW-MADISON 3

Moving forward Conformer specific IR-MS-IR-MS WC 11 Jonathan Voss MK 03 Casey Howdieshell Cryogenic

Moving forward Conformer specific IR-MS-IR-MS WC 11 Jonathan Voss MK 03 Casey Howdieshell Cryogenic mass-selective linear ion trap Tunable IR Laser a-D-glucose 2/11/2022 b-D-glucose UW-MADISON 4

Dual cryogenic ion trap spectrometer “Reaction Trap” LN 2 cryostat (77 -300 K) “Tagging

Dual cryogenic ion trap spectrometer “Reaction Trap” LN 2 cryostat (77 -300 K) “Tagging Trap” Closed-cycle He cryostat (10 K) To TOF-MS ESI Source RF ion guides 3 torr 0. 2 torr Linear octopole reaction trap 5 x 10 -4 torr 3 D quadrupole tagging trap 2 x 10 -6 torr 1 x 10 -7 torr B. M. Marsh, J. M. Voss and E. Garand, J. Chem. Phys. 143, 204201 (2015) 2/11/2022 UW-MADISON 5

Controlled preparation of intermediates – [Ru(tpy)(bpy)(O 2)]2+ [Ru(tpy)(bpy)(H 2 O)]2+ From ESI Collisional activation

Controlled preparation of intermediates – [Ru(tpy)(bpy)(O 2)]2+ [Ru(tpy)(bpy)(H 2 O)]2+ From ESI Collisional activation in 1 st ion guide [Ru(tpy)(bpy)]2+ SLOW Conception et al. JACS 132 1545 (2010) Van Voorhis et al. Inorg. Chem. 49, 4543 (2010) Polyansky et al. JACS 133 14649 (2011) 2/11/2022 Reaction with O 2 in 80 K trap [Ru(tpy)(bpy)(O 2)]2+ 240 245 UW-MADISON 250 m/z 255 260 265 6 E. M. Duffy, B. M. Marsh, J. M. Voss and E. Garand, Angew. Chem. Int. Ed. 55, 4079 (2016)

Finding the O-O stretch – [Ru(tpy)(bpy)(O 2)]2+ O―O [Ru(16 O 2)]2+ Singlet side-on Singlet

Finding the O-O stretch – [Ru(tpy)(bpy)(O 2)]2+ O―O [Ru(16 O 2)]2+ Singlet side-on Singlet end-on [Ru(18 O 2)]2+ Triplet end-on 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 Wavenumber (cm-1) wavenumber (cm-1) E. M. Duffy, B. M. Marsh, J. M. Voss and E. Garand, Angew. Chem. Int. Ed. 55, 4079 (2016) 2/11/2022 UW-MADISON 7

Temperature dependent HDX: Gly 2 H+/D 2 O 80 K Gly 2 H+, 80

Temperature dependent HDX: Gly 2 H+/D 2 O 80 K Gly 2 H+, 80 K 120 K 1 HDX, 120 K 140 K + 2 HDX, 140 K [? ]‡ 160 K 3 HDX, 160 K 180 K 4 HDX, 180 K 200 K 130 132 134 136 m/z 2/11/2022 138 140 142 2200 2400 2600 2800 3000 3200 3400 3600 3800 wavenumber (cm-1) UW-MADISON 8

Formation of solvent clusters – Gly 2 H+·(H 2 O)n Gly. H+ Reaction Trap

Formation of solvent clusters – Gly 2 H+·(H 2 O)n Gly. H+ Reaction Trap 300 K Tagging Trap 50 K (Gly. Gly)2 H+ +1 H 2 O +10 H 2 O +20 H 2 O +30 H 2 O Reaction Trap 80 K Tagging Trap 50 K Increasing RT Pressure 100 200 300 400 m/z 500 600 700 800 B. M. Marsh, J. M. Voss and E. Garand, J. Chem. Phys. 143, 204201 (2015) 2/11/2022 UW-MADISON 9

Hydration of a dipeptide – Gly 2 H+·(H 2 O)n a-NH NH 3 OHCA

Hydration of a dipeptide – Gly 2 H+·(H 2 O)n a-NH NH 3 OHCA +1 w +2 w +3 w +4 w 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 Wavenumber (cm-1) B. M. Marsh, J. M. Voss and E. Garand, J. Chem. Phys. 143, 204201 (2015) 2/11/2022 UW-MADISON 10

Controlled isotope labeling -H, +D All H (Gly)4 H+ in Me. OH D 2

Controlled isotope labeling -H, +D All H (Gly)4 H+ in Me. OH D 2 O in reaction trap @ 300 K 240 245 250 255 260 265 270 275 280 285 290 295 m/z D 2 O in reaction trap @ 80 K +D 2 O 240 2/11/2022 245 250 255 +D 2 O 260 265 270 m/z UW-MADISON 275 280 285 290 295 11

Disentangling spectral complexity GGGH+ +H 2 O GGGH+ 2600 2800 3000 3200 3400 3600

Disentangling spectral complexity GGGH+ +H 2 O GGGH+ 2600 2800 3000 3200 3400 3600 3800 2200 2400 2600 2800 3000 3200 3400 3600 3800 GGGH+ +D 2 O 2200 2400 2600 2800 3000 3200 3400 3600 3800 2600 2800 3000 3200 wavenumber 2/11/2022 3400 3600 3800 (cm-1) UW-MADISON wavenumber (cm-1) 12

Summary Dual cryogenic traps for reaction and spectroscopy ◦ Temperature controlled ion trap for

Summary Dual cryogenic traps for reaction and spectroscopy ◦ Temperature controlled ion trap for ion-molecule reactions: ◦ Accessing high-energy intermediate complexes ◦ Formation of large solvent clusters ◦ Measurement of activation barriers ◦ Cryogenic ion trap for spectroscopy ◦ Formation of tagged species for messenger spectroscopy ◦ Well-resolved features provide more detailed information on structures and interactions ◦ Direct characterization of ion-molecule reaction products 2/11/2022 UW-MADISON 13

Acknowledgements Current members: Dr. Jia Zhou Jonathan Voss Steve Kregel Glen Thurston Kaitlyn Fischer

Acknowledgements Current members: Dr. Jia Zhou Jonathan Voss Steve Kregel Glen Thurston Kaitlyn Fischer Casey Howdieshell Past members: Erin Duffy (MSU) Brett Marsh (UC Berkeley) Past Undergraduate Students Matthew Weis Michael Soukup Christina Mc. Nerney Maria Golovkina 2/11/2022 UW-MADISON 14