doc IEEE 15 12 0139 00 wng 0

  • Slides: 14
Download presentation
doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Project: IEEE P

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Towards Ultra Low Power Sensor Networks Date Submitted: March 2012 Source Kiran Byram, Shahriar Emami, Youngsoo Kim, Samsung; Chiu Ngo, Chunhui (Allan) Zhu, Samsung ; Liang Li, Vinno Technologies; Betty Zhao, Huawei, Myung; J. Lee, CUNY. E-mail: [Shahriar. e@samsung. com] Re: Abstract: Purpose: To request to establish a study group to investigate potential amendment to 802. 15. 4 for Ultra low power applications Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission 1 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Towards Ultra Low

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Towards Ultra Low Power Sensor Networks March 2012 Submission 2 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Desirable Sensor Networks

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Desirable Sensor Networks Attributes q Small node size q Power efficient nodes q High reliability q Use of globally available unlicensed band (such as 2. 4 GHz) Submission 3 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 WSN Applications/Standards Typical

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 WSN Applications/Standards Typical Data Rate (kbps) Typical Range (m) 250 - 1000 30 802. 15. 4/802. 15. 6/BT LE Inventory Management 1000 – 4000 100 BT/802. 15. 4/BT Home Automation 250 – 1000 100 802. 15. 4 Industrial Automation 1000 – 4000 100 802. 15. 4 Healthcare Existing Standard(s) q For different applications of wireless sensors, there exists some technology in place to achieve the purpose q Most of these applications are addressed by IEEE 802. 15. 4 Submission 4 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Power Analysis of

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Power Analysis of Sensor Nodes q Power consuming elements in sensor nodes q Sensing q Actuation q Logging the data into memory q Communication q Clustering q Processing q Communication energy consumption is almost 50% of the overall sensor node power consumption [3] Submission 5 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Power Consumption Figures

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Power Consumption Figures for IEEE 802. 15. 4 Vendor Chipset Rx Power Tx Power (0 d. Bm) Sleep Mode Power Vendor #1 Chipset #1 18. 5 m. A @ 3 V 25. 8 m. A @ 3 V 4 μW Vendor #2 Chipset # 2 38 m. A @ 2. 7 V 30 m. A @ 2. 7 v 4 μW Vendor #3 Chipset # 3 17. 5 m. A @ 3 V 15 m. A @ 3 V 4 μW q The existing silicon for IEEE 802. 15. 4 require 30 -100 m. W in transmit or receiver modes. Submission 6 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Power Consumption •

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Power Consumption • Long battery life and small form factor are vital for a number of applications. • Analog RF front end consumes most of the power. Baseband requires far less. Questions: • What are the RF architecture choices? • Are there any difference among them in terms of power consumption? Submission 7 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 RF Architecture Options

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 RF Architecture Options • • Low IF Uncertain IF Sliding IF Super Regenerative Receiver Submission 8 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Power Consumption RF

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Power Consumption RF Architecture Support for Modulation Rx Power Consumption Supply Voltage Low IF Coherent/ Non-coherent > = 30 m. W [4] 3 V Sliding IF Coherent/ Non-coherent 8. 5 m. W [7] 1. 2 V Super Regenerative RF Non-coherent 2 -3 m. W [2] 1. 2 V Uncertain IF Non-coherent 52 m. W [1] 0. 5 V Submission 9 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Summary • The

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Summary • The power consumption of various RF architectures are not the same. • Some architectures have limitations on the modulation type. • RF architectures that support non-coherent modulations are significantly more power efficient compared to the ones that support both modulation types. • Air interface should be designed to enable ultra low power consumption front ends. Submission 10 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Will The Existing

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Will The Existing PHYs Work? • Non-coherent modulation, for both payload and sync, can support ultra low power RF front ends • Two PHY options defined in 2. 4 GHz spectrum use coherent modulation which is not good for low power • ASK PHY cannot be reused as is due to BPSK preamble and robustness issues Submission 11 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 IEEE 802. 15.

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 IEEE 802. 15. 4 PHY Type Supported Bands (MHz) Data Rate Preamble Modulation O-QPSK PHY 2450, 915, 868, 780 MHz 250 kbps for 2450, 915, 868 MHz bands and 100 kbps for 780 MHz band O-QPSK PHY BPSK PHY 868, 915 and 950 MHz 20 kbps for 868/950 MHz and 40 kbps for 915 MHz band BPSK ASK PHY 868, 915 MHz band 250 kbps in 868 MHz BPSK CSS PHY 2450 MHz band 1 Mbps /250 kbps optional Chirp modulation UWB PHY 3. 1 to 10. 6 GHz 100 kbps to 27 Mbps Ternary codes (OOK, Phase modulated) GFSK 950 MHz 100 kbps GFSK New PHY 2. 4 GHz 100 kbps - 1 Mbps TBD Submission 12 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Proposed Changes to

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 Proposed Changes to IEEE 802. 15. 4 To add a new physical layer to IEEE 802. 15. 4 for ultra low power (ULP) technologies in 2. 4 GHz spectrum – This work will define a new 2. 4 GHz PHY of IEEE 802. 15. 4 – Necessary enhancements in MAC to support the new PHY Submission 13 Samsung Electronics, Vinno Technologies, Huawei and CUNY

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 References [1] N.

doc. : IEEE 15 -12 -0139 -00 -wng 0 Mar 2012 References [1] N. M. Pletcher, S. Gambini and J. Rabaey, “A 52 micro-W Wake-Up Receiver With -72 d. Bm Sensitivity Using an Uncertain-IF Architecture, ” IEEE Journal of Solid-State Circuits, vol. 44, no. 1, Jan. 2009. [2] F. X. Moncunill-Geniz, P. Palà-Schönwälder, and O. Mas-Casals, “A generic approach to theory of superregenerative reception, ” IEEE Trans. Circuits Syst. I, vol. 52, no. 1, pp. 54– 70, Jan. 2005. [3] <http: //www. jpier. org/PIERB/pierb 12/12. 08122303. pdf >. [4] <http: //www. ti. com/lit/ds/symlink/cc 2520. pdf>. [5] <http: //www. freescale. com/files/rf_if/doc/data_sheet/MC 13192. pdf>. [6] <http: //www. scantec. de/uploads/media/JN-DS-JN 5148 -1 v 2. pdf>. [7] N. Stanic, A. Balankutty, P. R. Kinget and Y. Tsivids, ”A 2. 4 -GHz ISM-band sliding-IF receiver with a 0. 5 -V supply, ” IEEE Journal of solid-state circuits, vol. 43, no. 5, May 2008. Submission 14 Samsung Electronics, Vinno Technologies, Huawei and CUNY