DLR de Chart 1 HumanintheLoop Landing Flare Flight

  • Slides: 24
Download presentation
DLR. de • Chart 1 Human-in-the-Loop Landing Flare Flight Test Simulation of the Space.

DLR. de • Chart 1 Human-in-the-Loop Landing Flare Flight Test Simulation of the Space. Liner Orbiter Frank Morlang

DLR. de • Chart 2 Overview • Motivation • Methodology • Results • Discussion

DLR. de • Chart 2 Overview • Motivation • Methodology • Results • Discussion & Outlook

DLR. de • Chart 3 Motivation • Now • Future (Who knows when ?

DLR. de • Chart 3 Motivation • Now • Future (Who knows when ? )

DLR. de • Chart 4 Methodology Human-in-the-Loop Simulation for Space Traffic integration test purposes

DLR. de • Chart 4 Methodology Human-in-the-Loop Simulation for Space Traffic integration test purposes ! Use Case: DLR Space. Liner concept

DLR. de • Chart 5 Methodology Design drawings + CFD results X-Plane flight simulation

DLR. de • Chart 5 Methodology Design drawings + CFD results X-Plane flight simulation model

DLR. de • Chart 6 Methodology + (CAC)1 & PAN AIR 2 model experiments’

DLR. de • Chart 6 Methodology + (CAC)1 & PAN AIR 2 model experiments’ results X-Plane flight simulation model 1 Software developed by DLR Institute of Space Systems, Dep. Space Launcher System Analysis 2 Software developed by BOEING

DLR. de • Chart 7 Methodology

DLR. de • Chart 7 Methodology

DLR. de • Chart 8 Results (flight model)

DLR. de • Chart 8 Results (flight model)

DLR. de • Chart 9 Results (flight model)

DLR. de • Chart 9 Results (flight model)

DLR. de • Chart 10 Results (flight model)

DLR. de • Chart 10 Results (flight model)

DLR. de • Chart 11 Results (simulated whole descent)

DLR. de • Chart 11 Results (simulated whole descent)

DLR. de • Chart 12 Results (simulated whole descent)

DLR. de • Chart 12 Results (simulated whole descent)

DLR. de • Chart 13 Results (simulated whole descent)

DLR. de • Chart 13 Results (simulated whole descent)

DLR. de • Chart 14 Results (simulated whole descent)

DLR. de • Chart 14 Results (simulated whole descent)

DLR. de • Chart 15 Results (simulated landing flare test) • Initial altitude setting

DLR. de • Chart 15 Results (simulated landing flare test) • Initial altitude setting of 14000 ftagl • Autopilot pitch mode speed with pitch setting of 250 kts • Gear extraction at 10000 ftagl • Flare out at 1200 ftagl with autopilot pitch mode vertical speed of 0 feet per minute

DLR. de • Chart 16 Results (simulated landing flare test)

DLR. de • Chart 16 Results (simulated landing flare test)

DLR. de • Chart 17 Results (simulated landing flare test)

DLR. de • Chart 17 Results (simulated landing flare test)

DLR. de • Chart 18 Results (simulated landing flare test)

DLR. de • Chart 18 Results (simulated landing flare test)

DLR. de • Chart 19 Results (simulated landing flare test)

DLR. de • Chart 19 Results (simulated landing flare test)

DLR. de • Chart 20 Discussion & Outlook • Similar whole descent decline X-Plane

DLR. de • Chart 20 Discussion & Outlook • Similar whole descent decline X-Plane / TOSCA with a steep, a nearly time constant and flat decrease phase

DLR. de • Chart 21 Discussion & Outlook • Although compressible flow effects are

DLR. de • Chart 21 Discussion & Outlook • Although compressible flow effects are considered using Prandtl-Glauert, the Space. Liner X-Plane simulation model needs deeper investigation in its transonic and supersonic behavior, taking into account that transonic effects in X-Plane only refer to an empirical mach-divergent drag increase and the airfoil becomes an appropriate thickness ratio diamond shape under supersonic conditions.

DLR. de • Chart 22 Discussion & Outlook • Smooth approach and landing with:

DLR. de • Chart 22 Discussion & Outlook • Smooth approach and landing with: • About 1200 ftagl flare out initiation • About 200 kts IAS • Final approach at about 250 kts • lift-to-drag ratio keeps above the acceptable value of 3. 01 1 P. M. Sforza, Manned Spacecraft Design Principles, 1 st ed. , Elsevier Aerospace Engineering Series, Elsevier, November 2015, pp. 175 -176.

DLR. de • Chart 23 Discussion & Outlook • BUT • wing loading peak

DLR. de • Chart 23 Discussion & Outlook • BUT • wing loading peak of 4200 N / m 2 exceeded the typical maximum values of the F-104 (mod), the X-15 and the Space Shuttle in the range of 3500 to 3800 N / m 21 1 P. M. Sforza, Manned Spacecraft Design Principles, 1 st ed. , Elsevier Aerospace Engineering Series, Elsevier, November 2015, pp. 175 -176.

DLR. de • Chart 24 Discussion & Outlook • Further simulated landing flare flight

DLR. de • Chart 24 Discussion & Outlook • Further simulated landing flare flight tests with smoother elevator actuator dynamics for target pitch mode vertical speed of 0 feet per minute and flare out initiation above 1200 ftagl are needed to find a setting not exceeding a wing loading peak 3800 N / m 2.