Discrete Mathematics Chapter 1 The Foundations Logic and

  • Slides: 41
Download presentation
Discrete Mathematics Chapter 1 The Foundations : Logic and Proofs 大葉大學 資訊 程系 黃鈴玲

Discrete Mathematics Chapter 1 The Foundations : Logic and Proofs 大葉大學 資訊 程系 黃鈴玲

1 -1 Propositional Logic 命題邏輯 n n n Def : A proposition (命題) is

1 -1 Propositional Logic 命題邏輯 n n n Def : A proposition (命題) is a declarative (敘述) sentence that is either true or false, but not both. Example 1 : (1) Toronto is the capital of Canada. (2) 1 + 1 = 2 都是命題!但(1)是錯誤的命題 Example 2 : (1) What time is it ? (2) Read this carefully. (3) x + 1 = 2 都不是命題!但(3)若給了x的範圍,則可算是命題 Ch 1 -2

Logical operators (邏輯運算子) and truth table (真值表) Def : A truth table (真值表) displays

Logical operators (邏輯運算子) and truth table (真值表) Def : A truth table (真值表) displays the relationships between the truth values of propositions. (列舉命題所有真假的可能性) n Table 1. The truth table for the Negation (not) (非) of a Proposition eg. p : “Today is Friday. ” ﹁p p ﹁p : “Today is not Friday. ” F T Ch 1 -4

n Table 2. The truth table for the Conjunction (and) (且) of two propositions

n Table 2. The truth table for the Conjunction (and) (且) of two propositions p q T T F F F T F F (p, q 都為T時,p q才是T) eg. p : “Today is Friday. ” q : “It’s raining today. ” p q : “Today is Friday and it’s raining today. ” Ch 1 -5

n n Table 3. The truth table for the Disjunction (or) (或) of two

n n Table 3. The truth table for the Disjunction (or) (或) of two propositions. p q T T F F T T T F F F (p, q 只要有一個是T,p q就是T) eg. p : “Today is Friday. ” q : “It’s raining today. ” p q : “Today is Friday or it’s raining today. ” Table 4. The truth table for the Exclusive or (xor) (互斥或) of two propositions. p q T T p ⊕ q F T F T T F F F (p, q 真值不相等時,p⊕q才是T) eg. p : “Today is Friday. ” q : “It’s raining today. ” p ⊕ q : “Either today is Friday or it’s raining today, but not both. ” Ch 1 -6

n n Table 5. The truth table for the Implication (p implies q) p

n n Table 5. The truth table for the Implication (p implies q) p → q (p蘊涵q) (If p then q). p q p→q T T T F F T 要求:若p對,則q一定要對 (若p錯,則不管q是T或F,p → q都是T) eg. p : “You make more than $25000. ” q : “You must file a tax return. ” p → q : “If you make more than $25000, then you must file a tax return. ” Some of the more common ways of expressing this implication are (下列幾種用法都是相同的): (1) if p then q (若p則q,p是q的充分條件) (2) p implies q (3) p only if q (只有q是True時,p才可能是True, 若q是False,則p一定是False) (若p則q,非q 則 非p) Ch 1 -7

Def : In the implication p → q , p is called the hypothesis

Def : In the implication p → q , p is called the hypothesis (假設) and q is called the conclusion (結論 ). n Def : Compound propositions (合成命題) are formed from existing propositions using logical operators. (即 、 、 ⊕、 →等) n Table 6. The truth table for the Biconditional p ↔ q (雙蘊涵) ( p → q and q → p ) (p與q的真�相等時才會是 T) p q p→q q→p p↔q T T T (p若且唯若q) F F T T F F “p if and only if q” F T n F F T T T and 運算 “p iff q ” “If p then q , and conversely. ” Ch 1 -8

※Truth Table for Compound Propositions 例11: 建構下列複合命題的真值表 (p q) → (p q) p T

※Truth Table for Compound Propositions 例11: 建構下列複合命題的真值表 (p q) → (p q) p T T F q q p q T T F T F F F not T T p q (p q) → (p q) T T F F F T F F imply (if…then…) or and Ch 1 -10

n Table 8. Precedence of Logical Operators (邏輯運算的優先順序) Operator Precedence ﹁ 1 2 3

n Table 8. Precedence of Logical Operators (邏輯運算的優先順序) Operator Precedence ﹁ 1 2 3 → 4 5 eg. (1) p q r means ( p q ) r (2) p q → r means ( p q ) → r (3) p ﹁ q means p ( ﹁ q ) Ch 1 -12

Translating (轉換) English Sentences into Logical Expression Example 12 : How can the following

Translating (轉換) English Sentences into Logical Expression Example 12 : How can the following English sentence be translated into a logical expression ? “You can access the Internet from campus only if you are a computer science major or you are not a freshman. ” Sol : a : “You can access the Internet from campus. ” c : “You are a computer science major. ” f : “You are a freshman. ” ∴ a only if ( c or ( ﹁ f )) 即 a → ( c ( ﹁ f )) Ch 1 -13

Def: A set of propositional expressions is consistent (一致) if there is an assignment

Def: A set of propositional expressions is consistent (一致) if there is an assignment of truth values to the variables in the expressions that makes each expression true. (一組由數個命題p, q, r等合成的命題, 如:p q, q r, p r 若存在一組真值的給法, 如設 p T, q F, 就像聯立方程式, 存在一組解 r T 使所有的命題都可以為真,即稱為consistent) Ch 1 -16

(等價命題) 1 -2 Propositional Equivalences n n Def 1: A compound proposition that is

(等價命題) 1 -2 Propositional Equivalences n n Def 1: A compound proposition that is always true is called a tautology. (真理) A compound proposition that is always false is called a contradiction. (矛盾) Example 1 : p ﹁p p ﹁p T F F T T F always true always false p ﹁p is a tautology. p ﹁p is a contradiction. Ch 1 -20

Def 2: The propositions p and q that have the same truth values in

Def 2: The propositions p and q that have the same truth values in all possible cases are called logically equivalent (等價). (p與q在所有情況的真值都相等) The notation p q ( or p q ) denotes that p and q are logically equivalent. Ch 1 -22

Example 2 : Show that ﹁( p q ) ﹁p ﹁q. pf : p

Example 2 : Show that ﹁( p q ) ﹁p ﹁q. pf : p q p q ﹁( p q ) ﹁p ﹁q ﹁p ﹁q T T F F F T T F F F T T 相等 故得證 ﹁( p q ) ﹁p ﹁q Ch 1 -23

Example 3 : Show that ﹁ p q. pf : p q ﹁p q

Example 3 : Show that ﹁ p q. pf : p q ﹁p q p q ﹁p T T F T F F F T T T 相等 故得證 ﹁ p q Ch 1 -24

Example 4 : Show that p (q r) (p q) (p r). pf :

Example 4 : Show that p (q r) (p q) (p r). pf : p q r T T F p (q r) p q p r (p q) (p r) T T T T T F F T T T T F T F T T F F F F F 相等 故得證 p (q r) (p q) (p r) Ch 1 -26

n ※ Some important logically equivalences (表 6, 表 7) (1) p q q

n ※ Some important logically equivalences (表 6, 表 7) (1) p q q p commutative laws. 交換律 (2) p q q p (3) ( p q ) r p (q r ) associative laws. 結合律 (4) ( p q ) r p (q r ) (5) p ( q r ) ( p q ) ( p r ) distributive laws 分配律 (6) p ( q r ) ( p q ) ( p r ) (7) ﹁( p q ) ﹁p ﹁q De Morgan’s laws 笛摩根定律 (8) ﹁( p q ) ﹁p ﹁q (9) p ﹁p T (10) p ﹁p F (11) p → q ﹁p q (例3) ((5)、(6)的觀念類似於c (a + b) = (c a) + (c b) Ch 1 -27

Example 8 : Show ( p q ) → (p q) is a tautology.

Example 8 : Show ( p q ) → (p q) is a tautology. pf : ( p q ) → (p q) ≡ ﹁( p q ) (p q ) ≡ ( ﹁p ﹁q ) (p q ) ≡ ( ﹁p p ) ( ﹁q q ) ≡T T ≡T By (11) By (7) By (3) Ch 1 -29

1 -3 Predicates and Quantifiers 屬性 n n n 數量詞 目標 : 了解 ∀

1 -3 Predicates and Quantifiers 屬性 n n n 數量詞 目標 : 了解 ∀ 及 ∃ 符號 Def : The statement P(x) is said to be the value of the propositional function P at x. (函數式命題,包含變數) ex : P(x) : “ x 變數 is greater than 3 ” (P(x): x > 3) predicate(屬性) Example 1: 若P(x)代表 “x > 3”,請問P(2)及P(4)的真值為何? Sol: P(2) F P(4) T Ch 1 -31

Example 1: 若Q(x, y)代表 “x = y + 3”,請問Q(1, 2)及Q(3, 0)的真值為何 ? Sol: Q(1,

Example 1: 若Q(x, y)代表 “x = y + 3”,請問Q(1, 2)及Q(3, 0)的真值為何 ? Sol: Q(1, 2) F Q(3, 0) T 量詞(quantifier) n n 命題中出現變數 x 時 the domain of x 指的是 x 的定義域,即範圍 Quantifiers : (數量詞,如 some,any,all 等) ∀ : universal quantifier (for all, for every, 所有的 ) ∃ : existential quantifier (there exist, there is, for some, 存在) Ch 1 -32

Example 11 : Let P(x) : x 2 < 10, when x ∈ Z+

Example 11 : Let P(x) : x 2 < 10, when x ∈ Z+ (正整數), x ≤ 4. What is the truth value of x P(x) ? Sol : x ∈ {1, 2, 3, 4} ∴ 42 = 16 > 10 ∴ x P(x) is false. Example 16 : Let P(x) : x 2 > 10, when x ∈ Z+, x ≤ 4. What is the truth value of ∃x P(x) ? Sol : x ∈ {1, 2, 3, 4} ∴ 42 = 16 > 10 ∴ ∃x P(x) is true. Ch 1 -34

n 補充 : 習題52 “∃!” 表示 存在且唯一,只存在唯一的一個 ∃!x P(x) 表示 “存在唯一的一個x 使P(x)為真” Example :

n 補充 : 習題52 “∃!” 表示 存在且唯一,只存在唯一的一個 ∃!x P(x) 表示 “存在唯一的一個x 使P(x)為真” Example : What is the truth values of the statements (a) ∃! x ( x 2 = 1 ) (b) ∃! x ( x + 3 = 2 x ) where x ∈ Z. Ans : (a) 12 = 1, (-1)2=1 False (b) x=3 is the only solution True Ch 1 -38

n Example : What is the truth values of the statements (a) ∀x ∀y

n Example : What is the truth values of the statements (a) ∀x ∀y (x + y ≥ 0), x, y ∈ N (自然數) T F (b) ∀x ∀y (xy = 0), x, y ∈ Z T (c) ∀x ∃y (x + y = 0), x, y ∈ Z F (d) ∀x ∃y (xy = -1), x, y ∈ Z T (e) ∃x ∀y (xy = 0), x, y ∈ Z F (f) ∃x ∀y (x + y = 0), x, y ∈ Z T (g) ∃x ∃y (xy = 0), x, y ∈ Z F (h) ∃x ∃y (x + y = ½), x, y ∈ Z Ch 1 -40