Digital Image Processing 3 rd Edition Rafael C

  • Slides: 23
Download presentation

Digital Image Processing 3 rd Edition Rafael C. Gonzalez, Richard E. Woods Prentice Hall,

Digital Image Processing 3 rd Edition Rafael C. Gonzalez, Richard E. Woods Prentice Hall, 2008

Table of Content • Chapter 1 • 1. 1 Introduction 1. 2 The Origins

Table of Content • Chapter 1 • 1. 1 Introduction 1. 2 The Origins of Digital Image processing • 1. 2 Examples of fields that use Digital Image Processing: - Gamma ray Imaging in Ultra Violet Band Imaging in Visible and Infrared bands Imaging in Microwave Band Imaging in radio Band Some other examples

Table of Content • Chapter 1 1. 4 Fundamental Steps in Digital Image Processing

Table of Content • Chapter 1 1. 4 Fundamental Steps in Digital Image Processing 1. 5 Components of an Image Processing System

Table of Content • Chapter 2 Digital Image Fundamentals 2. 1 Elements of Visual

Table of Content • Chapter 2 Digital Image Fundamentals 2. 1 Elements of Visual perception 2. 2 Light and the Electromagnetic Spectrum 2. 3 Image Sensing and Acquisition 2. 4 Image Sampling and Quantization 2. 5 Some Basic relationship between Pixels 2. 6 An introduction to mathematical tools used in digital image processing

Table of Content • Chapter 2 Digital Image Fundamentals 2. 6 An introduction to

Table of Content • Chapter 2 Digital Image Fundamentals 2. 6 An introduction to mathematical tools used in digital image processing • • Array verses matrix operations Linear verses nonlinear operations Arithmetic operations Set and Logical operation Vectors and matrix operations Image transforms Probabilistic methods

Table of Content • Chapter 3 Intensity Transformations and Spatial Filtering 3. 1 Background

Table of Content • Chapter 3 Intensity Transformations and Spatial Filtering 3. 1 Background 3. 2 Some Basic Intensity Transformation Functions 3. 3 Histogram Processing 3. 4 Fundamentals of Spatial Filtering 3. 5 Smoothing Spatial Filters 3. 6 Sharpening Spatial Filters 3. 7 Combining Spatial Enhancement Methods 3. 8 Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering

Table of Content • Chapter 4 Filtering in Frequency Domain 4. 1 Background 4.

Table of Content • Chapter 4 Filtering in Frequency Domain 4. 1 Background 4. 2 Preliminary Concepts (Introduction to Fourier Transform and Frequency Domain) 4. 3 Sampling and Fourier transform of Sampled Functions 4. 4 Discrete Fourier Transform (DFT) of one Variable 4. 5 Extension of functions of Two Variables 4. 6 Some Properties of 2 -D Discrete Fourier Transform 4. 7 Basic of Filtering in Frequency Domain

Table of Content • Chapter 4 Filtering in Frequency Domain 4. 8 Image Smoothing

Table of Content • Chapter 4 Filtering in Frequency Domain 4. 8 Image Smoothing using Frequency Domain Filters 4. 9 Image Sharpening using Frequency Domain Filters 4. 10 Selective Filtering - Bandreject and Bandpass filters - Notch Filtering 4. 11 Implementation

Table of Content • Chapter 4 • • Some other useful transforms Walsh Transform

Table of Content • Chapter 4 • • Some other useful transforms Walsh Transform Hadamard Transform Discrete Cosine Transform (DCT) Principal Component Analysis (PCA) Karhunen Loeve Transform (KLT) Hotling Transform

Table of Content • Chapter 5 Image Restoration and Reconstruction 5. 1 A Model

Table of Content • Chapter 5 Image Restoration and Reconstruction 5. 1 A Model of the Image Degradation/Restoration Process 5. 2 Noise Models 5. 3 Restoration in the Presence of Noise Only-Spatial Filtering 5. 4 Periodic Noise Reduction by Frequency Domain Filtering 5. 5 Linear, Position-Invariant Degradations 5. 6 Estimating the Degradation Function

Table of Content • Chapter 5 5. 7 5. 8 5. 9 5. 10

Table of Content • Chapter 5 5. 7 5. 8 5. 9 5. 10 5. 11 Image Restoration Inverse Filtering Minimum Mean Square (Winner) Filtering Constrained Least Squares Filtering Geometric Mean Filter Image Reconstruction from Projections

Table of Content • Chapter 5 Image Restoration How to find linear motion blur

Table of Content • Chapter 5 Image Restoration How to find linear motion blur and out of focus blur parameters and then restore such degraded images

Table of Content • Chapter 6 6. 1 6. 2 6. 3 6. 4

Table of Content • Chapter 6 6. 1 6. 2 6. 3 6. 4 6. 5 Color Image processing Color Fundamentals Color Models Pseudo-color Image processing Basics of Full-Color Image Processing Color Transformation

Table of Content • Chapter 6 6. 7 6. 8 6. 9 Color Image

Table of Content • Chapter 6 6. 7 6. 8 6. 9 Color Image processing Smoothing and Sharpening Image Segmentation based on Color Noise in Color Images Color Image Compression

Table of Content • Chapter 7 Waelets and Multiresolution Processing

Table of Content • Chapter 7 Waelets and Multiresolution Processing

Chapter 8 Image Compression - Fundamentals - Coding redundancy - Spatial and temporal redundancy

Chapter 8 Image Compression - Fundamentals - Coding redundancy - Spatial and temporal redundancy - Irrelevant information - Measuring image information - Fidelity criteria - Image compression methods - Image formats, Containers and compression standards

Chapter 8 Image Compression • - Some basic Compression methods - Huffman coding -

Chapter 8 Image Compression • - Some basic Compression methods - Huffman coding - Arithmetic Coding - LZW coding - Run length coding - Symbol-based coding - Bit-plane coding - Block transform coding - Predictive coding - Wavelet coding - Digital Image watermarking

Chapter 8 Image Compression • - Digital Image watermarking

Chapter 8 Image Compression • - Digital Image watermarking

Chapter-9 Binary Image Analysis – Binary Image Morphology • • • Structuring element Basic

Chapter-9 Binary Image Analysis – Binary Image Morphology • • • Structuring element Basic morphological operations Dilation and Erosion Opening and Closing The Hit-or-Miss transformation

Chapter-9 Binary Image Analysis • Some basic morphological algorithms – – – – Boundary

Chapter-9 Binary Image Analysis • Some basic morphological algorithms – – – – Boundary extraction Hole filling Extraction of connected components Convex Hull Thinning Thickening Skeleton Pruning

Table of Content • Chapter 10 Image Segmentation • Chapter 11 Representation and Description

Table of Content • Chapter 10 Image Segmentation • Chapter 11 Representation and Description • Chapter 12 Object Recognition